

VAYASAN NURUL JADID PAITON LEMBAGA PENERBITAN, PENELITIAN, & PENGABDIAN KEPADA MASYARAKAT UNIVERSITAS NURUL JADID

© 0888-3077-077
e: lp3m@unuja.ac.id

PP. Nurul Jadid

Karanganyar Paiton

Probolinggo 67291

PROBOLINGGO JAWA TIMUR

w: https://lp3m.unuja.ac.id

SURAT KETERANGAN

Nomor: NJ-To6/0352/A.03/LP3M/02.2021

Lembaga Penerbitan, Penelitian, dan Pengabdian Masyarakat (LP3M) Universitas Nurul Jadid Probolinggo menerangkan bahwa artikel/karya tulis dengan identitas berikut ini:

Judul

: Note on E-polynomials Associated to Z_4-codes

Penulis

: NUR HAMID, M.Si, Ph.D..

Identitas

: Nihonkai Mathematical Journal, Vol. XXX, No.2, November 2020,

E-ISSN: 1341-9951, Niigata University

No. Pemeriksaan

:012086

Telah selesai dilakukan *similarity check* dengan menggunakan perangkat lunak **Turnitin** pada 17 Januari 2021 dengan hasil sebagai berikut: Tingkat kesamaan diseluruh artikel (*Similarity Index*) adalah 16 % dengan publikasi yang telah diterbitkan oleh penulis pada Nihonkai Mathematical Journal (https://projecteuclid.org/all/euclid.nihmj)

Demikian Surat Keterangan ini dibuat untuk digunakan sebagaimana mestinya.

Probolinggo, 02 Februari 2021

Kepala LP3M,

ACHMAD FAWAID, M.A., M.A.

NIDN. 2123098702

NOTE ON E-POLYNOMIALS ASSOCIATED TO Z4-CODES

Submission date: 17-Jan-2021 05:07PM (UTC-0800)

Submission ID: 1489193525

File name: artikel2_Note_ok.pdf (522.9K)

Word count: 3033

Character count: 13694

NOTE ON E-POLYNOMIALS ASSOCIATED TO Z₄-CODES

NUR HAMID

ABSTRACt. The invariant theory of finite groups can connect the coding theory to the number theory. In this paper, under this conformity, we obtain the minimal generators of the rings of E-polynomials constructed from the groups related to Z4- codes. In addition, we determine the generators of the invariant rings appearing by E-Polynomials and complete weight enumerators of Type II Z4-codes.

1. Introduction

Our study is inspired by the idea of Motomura and Oura [6]. In their paper, they introduced the E-polynomials associated to the Z-codes. They determined both the ring and the field structures generated by that E-polynomials. E-polynomials associated to the binary codes were investigated in a previously conducted study (see [7]). In the present paper, we deal with Z-codes. Then, we define an E-polynomial with respect to the complete weight enumerator of Z-codes and show that the ring generated by them is minimally generated by E-polynomials of the following weights:

It seems that the ring generated by E-polynomials is not sufficient to generate the invariant ring for the finite group G^8 defined in the next section. By combining the E-polynomials and the complete weight enumerators of Z_4 -codes, we present the generators of that invariant ring.

We denote by C the field of complex number as usual. Let A_w be a finite-dimensional vector space over C. We write the dimension formula of A by the formal series

$$\sum_{w=0}^{\infty} (\dim A_w) t^w.$$

²⁰¹⁰ Mathematics Subject Classification. Primary 11T71; Secondary 11T06. Key words and phrases. E-polynomial, Z4-code.

For the dimension formulas and the basic theory of E-polynomials used herein, we refer to references [1] and [6]. For the computations, we use Magma [3] and SageMath [9]. The generator matrices of the groups and the codes used can be found in [5].

2. Preliminaries

We denote a primitive 8-th root of unity by η_8 . Following the notation used in [1], let G be a finite matrix group generated by

and diag [1, η_s , -1, η_s]. Let G^s be a matrix group generated by G and diag [η_s , η_s , η_s , η_s].

The group G is of order 384, whereas G^8 is of order 1536. We denote by R and R^8 the invariant rings of G and G^8 , respectively:

$$R = C[t_0, t_1, t_2, t_3]^G,$$

$$R^8 = C[t_{10}, t_{10}, t_{10}, t_1, t_1]^G$$

under an action of such matrices on the polynomial ring of four variables t_0 , t_1 , t_2 , and t_3 . The dimension formulas of R and R⁸ are given as follows:

$$(\dim \mathbf{R}_{w}) \ \mathbf{t}^{w} = \underbrace{\frac{1 + t^{8} + 2t^{10} + 2t^{12} + 2t^{14} + 2t^{16} + t^{18} + t^{20} + t^{22} + t^{26} + t^{28} + t^{30}}_{w},$$

$$(\mathbf{1 - t^{8}})^{3} \ (\mathbf{1 - t^{12}}),$$

$$(\mathbf{1 - t^{8}})^{3} \ (\mathbf{1 - t^{12}})$$

$$(\mathbf{1 - t^{8}})^{3} \ (\mathbf{1 - t^{24}}).$$

In the next section, we present a fundamental theory of codes that can help us obtain the generators of ring R⁸.

3. Codes

A code C over Z_4 of length n, called Z_4 -code, is an additive subgroup of Z_4^n . The inner product of two elements a, b \in C on Z_4^n is given by

$$(a, b) = a_1b_1 + a_2b_2 + ... + a_nb_n \mod 4$$

where $a = (a_1, a_2, ..., a_n)$ and $b = (b_1, b_2, ..., b_n)$. The dual of C is code C^{\perp} satisfying $C^{\perp} = \{y \in Z_{\underline{A}}^n | (x, y) \equiv 0 \mod 4, \ \forall x \in C\}.$

We say that C is self-orthogonal if $C \subset C^{\perp}$ and self-dual if $C = C^{\perp}$. A code C is called *Type II* if it is self-dual and satisfies

$$(x, x) \equiv 0 \mod 8$$

for all $x \in C$. Type II Z_i -code can only exist when its length is multiple of 8. There are several types of weight enumerators associated with a Z_i -code. In this paper, we deal with complete weight enumerators.

The complete weight enumerator (CW) of a Z-code C is defined by

$$CW_C(t_0, t_1, t_2, t_3) = \sum_{\substack{0 \ c \in C}} t^{n_0(c)} t^{n_1(c)} t^{n_2(c)} t^{n_4(c)}$$

where $n_i(c)$ denotes the number of c components which are equivalent to i modulo **4.** For every Type II Z_i -code, CW_C (t_i , t_i , t_i , t_i) is G^s -invariant (see [2]). From the dimension formula of R^s , we have the following proposition.

Proposition 3.1. The invariant ring R^8 can be generated by the set of complete weight enumerators of Type II Z₄-codes consisting of at most

4 codes of length 8,
codes of length 16,
codes of length 24,
code of length 32,
code of length 40.

2

3

We denote by p_{8a} , p_{8b} , o_{8} , k_{8} , p_{16a} , p_{16b} , q_{24a} , q_{24a} , q_{24} , q_{24} , q_{32} the complete weight enumerators of some codes. The numbers written as subscript denote the degree of each polynomial. The codes o_{8} , k_{8} , and g_{24} are known as octacode, Klemm code, and Golay code, respectively. The generator matrices of the complete weight enumerators which are denoted by p are taken from [8]. We give the generator matrices of other complete weight enumerators in Appendix 5.2. The following are the explicit

forms of some complete weight enumerators:

Since other weight enumerators are too large, we do not write them.

Let W be a ring generated by the complete weight enumerators aforementioned:

$$W = C[p_{8a}, p_{8b}, o_8, k_8, p_{16a}, p_{16b}, q_{24a}, q_{24b}, g_{24}, q_{32}].$$

By obtaining the dimension of W, we have the following result.

Theorem 3.1. The invariant ring R^8 can be generated by W.

Proof. By Proposition 3.1, we generate W by utilizing some complete weight enumerators of non-equivalent codes. Then, we compute the dimension of W. The dimension of each W_k is shown in Table 1. This completes the proof of Theorem

TABLE 1. The dimensions of \mathbf{R}_k^s and \mathbf{W}_k

It is noteworthy that we do not need to use the code of length 40. On the next section, we shall give the generators of R⁸ by the weight enumerators of Type II Z₄-codes and E-polynomials.

4. E-Polynomials

Let \mathbf{t} be a column vector that comprises the following: \mathbf{t}_0 , \mathbf{t}_1 , \mathbf{t}_2 , and \mathbf{t}_3 . An E-polynomial of weight \mathbf{k} for G is defined by

$$\varphi^{G} = \varphi^{G}(\mathbf{t}) = \frac{1}{|G|} \sum_{\sigma \in G} (\mathbf{t})^{k} = \frac{|K|}{|G|} \sum_{K \setminus G \ni \sigma} (\sigma \cdot \mathbf{t})^{k}$$

where

and σ_0 is the first row of σ . We apply the same definition for G^8 . The subgroup K of G is of order 8 and K^8 of G^8 is of order 16. For simplicity, we denote by ϕ_k without specifying the group. We denote by E and E^8 the rings generated by ϕ_k 's for the groups G and G^8 , respectively.

Denote by κ the cardinality of K\G. For clarity, we write κ_G instead of κ by including the group objected. It is clear that $\kappa_G = 48$ and $\kappa_{G^S} = 96$.

Theorem 4.1. (1) The ring E is generated by φ_k where

$$k \equiv 0 \mod 4$$
, $8 \le k \le 48$.

(2) The ring E^8 is generated by ϕ_k where

$$k \equiv 0 \mod 8, \quad 8 \le k \le 96.$$

Proof. (1) For each representative σ_i of K\G (1 \leq i \leq \kappa), let $x_i = \sigma_i^* t$, where σ_i^* is the first row of σ_i . Then, every φ_i can be expressed in C[x₁, . . . , x_{\kappa}]. By the fundamental theorem of symmetric polynomials, every φ_i can be written uniquely in ε_{ij} ..., $\varepsilon_{\kappa} \in C[x_{ij}, \dots, x_{\kappa}]$ where

$$\varepsilon_r = \sum_{i_1 < i_2 < \dots < i_r} x_{i_1} x_{i_2} \dots x_{i_r}, \quad (1 \leq r \leq \kappa).$$

We mention that $\varphi_{4}=0$. This completes the proof.

Theorem 4.1 informs us that the rings E and E^8 are finitely generated. Hence, we can find their minimal generators. In the next theorem, we determine the generators of both E and E^8 .

Theorem 4.2. (1) E is minimally generated by the E-polynomials of weights 8, 12, 16, 20, 24, 28, 32, 40, 48.

TABLE 2. The dimensions of R_k and E_k

											48
$\dim R_k$ $\dim E_k$	4	3	16	11	25	27	48	54	83	94	133
$\dim \mathbf{E}_k$	1	1	2	2	4	4	4	7	7	10	18

TABLE 3. The dimensions of \mathbb{R}^8 and

						E			k	k		
k	8	16	24	32	40	48	56	64	72	80	88	96
$\operatorname{dim} \mathbf{R}_k^{\scriptscriptstyle{\mathrm{s}}}$	4	11	25	48	83	133	200	287	397	532	695	889
$\dim \mathbb{R}^{s}_{k}$ $\dim \mathbb{E}^{s}_{k}$	1	2	3	5	7	11	15	22	30	42	52	61

(2) E⁸ is minimally generated by the E-polynomials of weights

Proof. For each k, we construct the rings E_k and E^s . Then, we determine whether φ_k is generator or not. The dimensions of each E and E^s are demonstrated in Tables 2 and 3. This completes the proof of Theorem 4.2.

Now, we obtain the relation between E^s and R^s . From Table 3, we observe that the ring E^s is not sufficient to generate R^s . By combining R^s and W, we have the following theorem.

Theorem 4.3. The invariant ring R^s can be generated by E^s and the complete weight enumerators

$$p_8,\ o_8,\ k_8,\ p_{16},\ p_{24},\ q_{24},\ p_{32}.$$

More specifically, the set

$$\{\varphi_k, p_8, o_8, k_8, p_{16}, p_{24}, q_{24}, p_{32} \mid k = 8, 16, 24\}$$

generates ring R8.

Proof. Denote by $\widetilde{\mathbf{R}}$ the polynomial generated by \mathbf{E}^s and the complete weight enu-

merators aforementioned. Then we construct R_k for $k \equiv 0 \mod 8$ and $8 \le k \le 96$. It follows that each φ_k for $k \neq 8$, 16, 24 is linearly dependent. We compute the dimension of each \widetilde{R}_k and write the results in Table 4. This completes the proof. \square

Acknowledgements. The author would like to thank Prof. Manabu Oura for his advice and suggestions.

Appendices

5.1. Other E-polynomials

The group G is of order 24, whereas H is of order 120. The group G is related to the self-dual ternary codes, whereas H is related to the ring of symmetric Hilbert modular form. The discussion on these group can be found in [4].

By utilizing the same method discussed, we have that the ring generated by Epolynomials φ_k^G s (respectively φ_k^H s) is minimally generated by E-polynomials φ_k^G and

 φ_6 (respectively φ_2 , φ_6 , and φ_{10}). Thus, we have that

$$E(G) = \langle \varphi_4, \varphi_6 \rangle$$

and

$$\mathbf{E}(\mathbf{H}) = \langle \varphi_2, \varphi_6, \varphi_{10} \rangle.$$

The following tables present the dimensions of E for each group.

TABLE 5. The dimensions of $R(G)_k$ and $E(G)_k$

$$\begin{array}{c|ccc} k & 4 & 6 \\ \dim R_k & 1 & 1 \\ \dim E_k & 1 & 1 \end{array}$$

TABLE 6. The dimensions of $R(H)_k$ and $E(H)_k$

From Tables 5 and 6, we can conclude that E(G) (respectively E(H)) satisfies $\dim E(G)_k = \dim R(G)_k$

$$(\dim E(H)_l = \dim R(H)_l)$$

for $k \ge 4$ and $k \equiv 0 \mod 2$ (respectively $l \equiv 0 \mod 2$). The dimension formulas of R(G) and R(H) can be written as follows.

G:
$$\frac{1}{(1-t^4)(1-t^6)}$$
,

$$H \ : \ \frac{1}{(1 \, - \, t^2)(1 \, - \, t^6)(1 \, - t^{10})}.$$

5.2. Generator Matrices

The generator matrix of $q_{^{24}\alpha}$ and $q_{^{24}b}$ are given by

	101011100110002100101101	100000100100000201011213
	\square 010011020110002300110000 \square	□ 011000020100000201011011 □
	002000000000000200020020	0020002000000000000000202
	000111010000000200020020	0001112100000000000000202
	igsq 0000200200000000000020002 igsq	[□] 0000200200000000000000000000000000000
	□ 0000020200000000000020002 □	□ 00000202000000000000000000 □
	000000200000000200020020	000000001110001200011323
	000000001110001200020002	0000000002000000000000000000000000000
$q_{24\alpha}$. — 000000000200002000020002	000000000020000000000000000
4 24 <i>a</i>	000000000002000200020002	\square 0000000000011101000000002 $_{\square}$
	q \Box	000000000000200200000000
	000000000001112100011121	000000000000020200000000
	00000000000020020002	000000000000002000000200
	□ 0000000000000020200020002 □	00000000000000011100012 000000000000000
	$ 00000000000000011131131 \\ \square \ 0000000000000000000200020 \\ \square $	000000000000000000000000000000000000000
	00000000000000000220022	0000000000000000000000000000000000
	\square 000000000000000000000000000000000000	00000000000000000000002002
	000000000000000000000000000000000000000	

The generator matrix of q_{32} is given by

	1	
	10101010011000000010001201012123	
	01001000011000000010001201001020	
_	002000020000000000000000000000000000000	
	00011103000000000000000000013101	
	000020020000000000000000000000000000000	_
	000002020000000000000000000000000000000	H
	0000002200000000000000000000000000022	
	000000001110001200000000000002002	
	000000002000020000000000000000000000000	
_	000000000020002000000000000000000000000	Н
_	000000000001112100000000000000000	
	0000000000002002000000000000000000000	
	00000000000002020000000000000000	
	00000000000000001110001200002002	L
_	000000000000000000000000000000000000000	
	00000000000000000020002000000000	
	000000000000000001112100000000	_
	000000000000000000000000000000000000000	_
	000000000000000000000020200000000	
_]0000000000000000000000001111133	
	000000000000000000000000000002002022	
	000000000000000000000000000000000000000	_
	000000000000000000000000000000000000000	E
	000000000000000000000000000000000000000	

References

- [1] E. Bannai, et.al., Type II Codes, Even Unimodular Lattices and Invariant Rings, IEEE Trans. Inform. Theory. 45 (1999), 1194-1205.
- [2] A. Bonnecaze, Et.al., Type II Codes over Z₄, IEEE Trans. Inform. Theory. 43 (1997), 969-976.
- [3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput., 24, no. 3-4 (1997), 235–265.
- [4] W. Ebeling, Lattices and Codes: A course Partially Based on Lectures by F.
 - Hirzebruch, 1994, Vieweg, Germany.
- [5] N. Hamid. *The generator matrices*, https://sites.google.com/view/hamidelfath/generators, last accessed: 7 Ocotber 2019.

- [6] T. Motomura and M. Oura, E-Polynomials Associated to Z4-codes, Hokkaido Math. J. 2 (2018), 339-350.
- [7] M. Oura, Eisenstein Polynomials Associated to Binary Codes, Int. J. Number Theory. 5 (2009), 635-640.
- [8] V. Pless, et.al., All Z4 Codes of Type II and Length 16 are Known, J. Combin. Theory Ser A. 78, 32-50, 1997.
- [9] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 8.1), http://www.sagemath.org, 2017.

(Nur Hamid) (1) Graduate School of Natural Science and Technology, Kana: University, Japan, (2) Universitas Nurul Jadid, Paiton, Probolinggo, Indonesia

Email address: hamidelfath@gmail.com

Received 2019.10.1 Revised 2019.10.7

NOTE ON E-POLYNOMIALS ASSOCIATED TO Z4-CODES

ORIGIN	ALITY REPORT	
	6% 15% 9% 2% ARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT IS	PAPERS
PRIMAF	RY SOURCES	
1	compgroups.net Internet Source	6%
2	export.arxiv.org Internet Source	2%
3	www.neari.org Internet Source	1%
4	pubs.rsna.org Internet Source	1%
5	"Stochastic Switching Systems", Springer Science and Business Media LLC, 2006 Publication	1%
6	Liu Shuyang, Li Jianping. "A Self-Adaptive Decoding Scheme for BICM-ID Embedded Turbo Codes", Physics Procedia, 2012 Publication	1%
7	Wachspress, Eugene. "The Quadrilateral", Rational Bases and Generalized Barycentrics, 2016. Publication	1%

8	www.hybrid-analysis.com Internet Source	1%
9	E. Haro-Poniatowski, M. Jouanne, J. F. Morhange, M. Kanehisa, R. Serna, C. N. Afonso. "Size effects investigated by Raman spectroscopy in Bi nanocrystals", Physical Review B, 1999 Publication	<1%
10	theses.gla.ac.uk Internet Source	<1%
11	" " Control Problem", Control Engineering, 2006 Publication	<1%
12	Joel M. Tendler. "A stiffly stable integration process using cyclic composite methods", ACM Transactions on Mathematical Software, 12/1/1978 Publication	<1%
13	Milici, S "Minimum embedding of P"3-designs into TS(v,@I)", Discrete Mathematics, 20080206	<1%
14	Xiang-Bin Wang, Xiao-Long Hu, Zong-Wen Yu. "Practical Long-Distance Side-Channel-Free Quantum Key Distribution", Physical Review Applied, 2019 Publication	<1%

<1%

16

H. M. Dufour, D. Burette. "Presentation synthetique des methodes semi-iteratives de resolution des systemes lineaires", Bulletin géodésique, 2008

<1%

Publication

Exclude quotes Off

Exclude bibliography Off

Exclude matches

Off