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NOTE ON E-POLYNOMIALS ASSOCIATED TO
Z4+-CODES

NUR HAMID

ABSTRAct. The invariant theory of finite groups can connect the coding theory to the
number theory. In this paper, under this conformity, we obtain the minimal generators of
the rings of E-polynomials constructed from the groups related to Za- codes. In addition,
we determine the generators of the invariant rings appearing by E-Polynomials and
complete weight enumerators of Type I Za-codes.

1. Introduction

Our study is inspired by the idea of Motomura and Qura [6]. In their paper,
they introduced the E-polynomials associated to the Z.-codes. They determined
both the ring and the field structures generated by that E-polynomials. E-
polynomials associated to the binary codes were investigated in a previously conducted
study (see [7]). In the present paper, we deal with Z.-codes. Then, we define an E-
polynomial with respect to the complete weight enumerator of Z--codes and show that
the ring generated by them is minimally generated by E-polynomials of the following
weights:

8, 16, 24, 32, 40, 48, 56, 64, 72, 80.

It seems that the ring generated by E-polynomials is not sufficient to generate
the invariant ring for the finite group G defined in the next section. By
combining the E-polynomials and the complete weight enumerators of Z.-codes,
we present the generators of that invariant ring.

We denote by C the field of complex number as usual. Let A, be a finite-
dimensional vector space over C. We write the dimension formula of A by the
formal series

=

(dim A )tw.

=0
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For the dimension formulas and the basic theory of E-polynomials used herein, we
refer to references [1] and [6]. For the computations, we use Magma [3] and
SageMath [9]. The generator matrices of the groups and the codes used can be
found in [5].

2. Preliminaries

We denote a primitive 8-th root of unity by ns. Following the notation used in
[1], let G be a finite matrix group generated by

101 1 1
n i i =1-i

2E1—1 1—1E
1

=il =il 1

and diag [1, n; —1, ns]. Let G' be a matrix group generated by G and diag [, 15

LI EA T|<].

The group G is of order 384, whereas G’ is of order 1536. We denote by R and R’
the invariant rings of G and G, respectively:

R = C[t:, t|, t:, tﬁ]G.

R' = Clt t,t,t 16

under an action of such matrices on the polynomial ring of four variables t, t, t,
and t. The dimension formulas of R and R’ are given as follows:

i 1+t + 2t 2t et 2t T+t

(dimRw) tw =
w @=tHa -t
>0 C ) 1+t + 2t 2t 4ttt
dimR,, tw =
w (-t (-t

In the next section, we present a fundamental theory of codes that can help us
obtain the generators of ring R".

3. Codes

A code C over Z: of length n, called Z.-code, is an additive subgroup of Z;l. The
inner product of two elements a, b € C on, Z" is given by

(a, b) = ab, + ab, + .. + asb, mod 4

where a = (a, a5 .., an) and b = (b, by, .., bs). The dual of C is code Ct
satisfying

Ct ={y €Zlx y)= omod 4, vx € C}.




We say that C is self-orthogonal if C < C+ and self-dual if C = C+. A code C
is called Type II if it is self-dual and satisfies

(x, x) = o mod 8

for all x € C. Type II Z.-code can only exist when its length is multiple of 8.
There are several types of weight enumerators associated with a Z:-code. In this
paper, we deal with complete weight enumerators.
The complete weight enumerator (CW) of a Z-code C is defined by

P .
CWC (t()r tlr t2r t‘_{) - X tfl{)if)tﬂl[g)trl.z(;!)trmfc)

cel

where n{c) denotes the number of ¢ components which are equivalent to i modulo
4. For every Type II Z.-code, CW¢ (t, t), t;, t:) is G-invariant (see [2]). From
the dimension formula of R’, we have the following proposition.

Proposition 3.1. The invariant ring R® can be generated by the set of complete
weight enumerators of Type II' Zs-codes consisting of at most

4 codes of length 8,

codes of length 16,

3 codes of length 24,
1 code of length32,

1 code of length 40.

We denote by psg, Dib 05, Ki, Disa, Dicks Qe Qo 824 2 the complete weight enu-

merators of some codes. The numbers written as subscript denote the degree of each
polynomial. The codes os; k:, and g. are known as octacode, Klemm code, and
Golay code, respectively. The generator matrices of the complete weight enumera-
tors which are denoted by p are taken from [8]. We give the generator matrices
of other complete weight enumerators in Appendix 5.2. The following are the
explicit




forms of some complete weight enumerators:

Pie =t + 4t + 12t + gttt + 386t + 12t + ' + 4t + 16ttt
0 0 0 2 1 2 0 0 2 2 1 0 1
1 4 a 2' a 3 2 a 2 4 a
+ 16ttt + 24t'ttt’ + 241;1:31:"1:2 + 28tt + 16ttt + 16ttt
L2 o 1 3 23 1 3 0 3 2 3
+ 4ttt + 4ttt + 281:1: + 41:‘1:
3 3
p =t + Bttt: 12tt + 8htt + 38tt + 12t + t' + 16t + 48tttr

0 0 () 2 1 o 2 0 2 2 I 3 0 3

Il
+ 48tttt + 32tt + 8t'ot’ + 8ttt + 16tt
13 0 3 2 3 3

k =t + t + 28tt + 7ot't’ + 281:1: + t o+ 28tt + 70t't" + 281:1: + t,
0 1 0 2 0 0 2 1 3

2
0=t + t 4+ 14ttt + £ + 56ttLL + 56t.ttt + 56tt.tt + 56ttt
0 1 () 2 2 0 1 2 3 2 3

+ 14tt e t
3
Dia = t° + 30tt + t + 140t"t" + 420ttt + 448t"t" + 8yot't’ + 3ot’t
0 [} 0 2 01 0 2 0o 2 1 2

2
+ 448tt" + 140t"t“ + t° + 3360t°°tt + 6720ttt + 3360tttt
02 02 2 0123 0123

2 ’i

+ 420ttt + 140t t + 6720ttt + 19320t't't't" + 6720ttt
13 0123 0123 0123

+ 420ttt + 448tt + 3360ttt + 6720ttt + 3360tttt
3 0123 0123 01 3

+ 30tt + 8701:1: + 420t't't’ + 3ott + 448tt + 140t't" + t*.
3 o 2 3 3 13 3
3

Since other weight enumerators are too large, we do not write them.
Let W be a ring generated by the complete weight enumerators aforementioned:

W = Clpiw Psb 05 Ky Dia Pisb Qe Qub, S g5l
By obtaining the dimension of W, we have the following result.
Theorem 3.1. The invariant ring R’ can be generated by W.

Proof. By Proposition 3.1, we generate W by utilizing some complete weight enu-
merators of non-equivalent codes. Then, we compute the dimension of W. The
dimension of each’ Wi is shown in Table 1. This completes the proof of

Theorem
3.1.

TABLE 1. The dimensions of E& and Wik

k |8]16]24]32]40
dimR" | 4| 11 | 25|48 | 83
dimW |4 |11 |25|48 |83

It is noteworthy that we do not need to use the code of length 40. On the
next section, we shall give the generators of R’ by the weight enumerators of

Type II Z:-codes and E-polynomials.




4. E-Polynomials

Let t be a column vector that comprises the following: t, t, t, and t. An E-
polynomial of weight k for G is defined by

1 > K >
90 = go®) = * “ o vr = K (6 O
k K 0 0

IGI oG 161 K\G2

G2o
where 0 r
1 0 0 O
* * * *

K = { € G}
*[ ] % * [*x
* * * *

and oy is the first row of . We apply the same definition for G. The
subgroup K of G is of order 8 and K’ of G’ is of order 16. For simplicity, we
denote by ¢ without specifying the group. We denote by E.and E' the rings
generated by @i’'s for the groups G and G', respectively.

Denote by x the cardinality of K\G. For clarity, we write kg instead of x by
including the group objected. It is clear that ks = 48 and ke = 96.

Theorem 4.1. (1) The ring E is generated by @i where
k =0 mod 4 8 <k <48
(2) The ring E' is generated by @i where
k =0 mod 8 8 <k < g6

Proof. (1) For each representative oi of K\G (1 <i < k), let xi = ogt,
where o; is the first row of o:. Then, every ¢: can be expressed in C[x, . .
, Xx]. By the fundamental theorem of symmetric polynomials, every ¢; can be

written uniquely in &;,..., ex € Clxy, .. ., xx] where
Er = > XiXi, ...%, (1 <r < K.
i1 <iz<...<i,

We mention that ¢.=0. This completes the proof.
(2) The proof follows similarly that of Theorem 4.1 (1). o

Theorem 4.1 informs us that the rings E and E® are finitely generated. Hence, we
can find their minimal generators. In the next theorem, we determine the generators of

both E and E&.

Theorem 4.2. (1) E is mimmaﬂy genemfed by the E-pa!yrwmia!s af weighfs
8, 12, 16, 20, 24, 28, 32, 40, 48.




TABLE 2. The dimensions of Ry and Ex

k |8|12|16‘20|24|28|32|36|40|44| 48

dimRy. | 4| 3 |16 | 11| 25|27 |48 |54 | 83|94 | 133
dmEx (1| 1| 2|2 4| 4|4|7]|7 |10 18
TABLE 3. The dimensions of R' and

k I
k |8]16]24]32]40]| 48 | 56 | 64 | 72 | 80 | 88 | 96
dimR, 141112548 83]133|200|287|397|532] 695/ 889
dimE 1/ 2|3 |5 |7 | 11|15 |22|30]|42| 52| 61

(2) E"is minimally generated by the E-polynomials of weights
8, 16, 24, 32, 40, 48, 56, 64, 72, 80.

Proof. For each k, we construct the rings Ex imd E*. Then, we determine
whether ¢y is generator or not. The dimensions of each E and E* are demonstrated
in Tables 2 and 3. This completes the proof of Theorem 4.2.

Now, we obtain the relation between E* and R'. From Table 3, we observe
that the ring E’ is not sufficient to generate R’. By combining R’ and W, we
have the following theorem.

Theorem 4.3. The invariant ring R’ can be generated by E' and the complete
weight enumerators

Ps 05, Ks pig P, Qs P
More specifically, the set
{q:lk, Ps, O, k‘, Pigy Pasy Qs P2 | k = 8, 16, 24}
generates ring R
Proof. Denote by R the polynomial generated by E° and the complete weight
enu- -
merators aforementioned. Then we construct Ry for k = 0 mod 8 and 8 < k <
96. It follows that each @x for k= 8, 16, 24 is linearly dependent. We compute

the di- mension of each R; and write the results in Table 4. This completes
the proof. ]

TABLE 4. The dimensions of R and R
S dimR; 3t
dimRy 25

48F8y 4°
48| 83

4 T
4|11
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5. Appendices

5.1. Other E-polynomials

Let G and H be the matrix groups degcribed as follot@:

C
G:( - 12 1 9er)

D

v,

i 1 —1 0 e 3

1 3|:l [ : .
1 2 2 Lo o 10" 0
- O

H = (0173407 64, o © Lo, - 0218 1py.

The group G is of order 24, whereas H is of order 120. The group G is
related to the self-dual ternary codes, whereas H is related to the ring of
symmetric Hilbert modular form. The discussion on these group can be found
in [4].

By utilizing the same method discussed, we have that the ring generated by E-
polynomials (p:S (respectively (pis) is minimally generated by E-polynomials ¢: and
@s (respectively ¢, @s and @u). Thus, we have that

E(G) = (@4 o)
and

E(H) = (@1 @5 @u).
The following tables present the dimensions of E for each group.

TABLE 5. The dimensions of R(G)r and E(G)x

TABLE 6. The dimensions of R(H)r and E(H)x

k |2]4]6]|8]10
dmR |1]1]/2]2] 3
dimE‘k 1122/ 3

From Tables 5 and 6, we can conclude that E(G) (respectively E(H)) satisfies
dim E(G)x = dim R(G)x




(dim E(H): = dim R(H))

for k > 4 and k = 0 mod 2 (respectively 1 = 0 mod 2). The dimension
formulas of R(G) and R(H) can be written as follows.

1

1
1 - O — O — ooy

5.2. Generator Matrices

The generator matrix of qu, and q., are given by

101011100110002100101101 100000100100000201011213
[ 010011020110002300110000 L []011000020100000201011011 [
002000000000000200020020 002000200000000000000202
000111010000000200020020 000111210000000000000202

000020020000000000020002 — 1 000020020000000000000000 =
£1000002020000000000020002 - [ 000002020000000000000000 —
000000200000000200020020 000000001110001200011323
000000001110001200020002 ] 000000000200000000000002

L1000000000200002000020002 000000000020000000000200

Q24a : y Mb t
O 000000000020002000020002 C 24b [ 000000000001110100000002

q 000000000000200200000000
000000000000020200000000
0 000000000000002000000200 -

C

000000000001112100011121
000000000000200200020002

] 000000000000020200020002 L 000000000000000011100012
[1000000000000000002000020 [
000000000000000011131131

] 000000000000000002000020 [ 000000000000000000200222
000000000000000000220022 [] 000000000000000000020002 [~

] 000000000000000000002002 [~ 000000000000000000002002
000000000000000000000202




The generator matrix of g is given by

10101010011000000010001201012123
01001000011000000010001201001020
1100200002000000000000000000000022 -
00011103000000000000000000013101
00002002000000000000000000002002
00000202000000000000000000000000
[ 100000022000000000000000000000022
00000000111000120000000000002002
00000000020000200000000000002002
00000000002000200000000000002002 =
L 0000000000111210000000000000000
00000000000020020000000000000000
00000000000002020000000000000000
“50000000000000001110001200002002 -
[1o0000000000000000200002000002002 [
00000000000000000020002000000000
—0000000000000000001112100000000
00000000000000000000200200000000
00000000000000000000020200000000
[J00000000000000000000000011111133 [
00000000000000000000000002002022
00000000000000000000000000200020
00000000000000000000000000020002
00000000000000000000000000000202

References

[1] E. Bannai, et.al., Type 1I Codes, Even Unimodular Lattices and Invariant Rings,
IEEE Trans. Inform. Theory. 45 (1999), 1194-1205.

[2] A. Bonnecaze, Etal., Type II Codes over Z., 1EEE Trans. Inform. Theory. 43
(1997), 969-976.

[3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user
language, J. Symbolic Comput., 24, no. 3-4 (1997), 235—265.

{4] W. Ebeling, Lattices and Codes: A course Partially Based on Lectures by
F
Hirzebruch, 1994, Vieweg, Germany.

[5] N. Hamid. The generator matrices, https: //sites.google.com/view/hamidelfath/
generators, last accessed: 7 Ocotber 2019.




[6] T. Motomura and M. Oura, E-Polynomials Associated to Z.-codes, Hokkaido
Math. J. 2 (2018), 339-350.

[7]1 M. Oura, Eisenstein Polynomials Associated to Binary Codes, Int. J. Number
Theory. 5 (2009), 635-640.

[8] V. Pless, et.al.,, All Z. Codes of Type I and Length 16 are Known, J. Combin.
Theory Ser A. 78, 32-50, 1997.

[9] The Sage Developers, Sagemath, the Sage Mathematics Software System (Ver-
sion 8.1), http://www.sagemath.org, 2017.

(Nur Hamid) (1) Graduate School of Natural Science and Technology, Kana: » University, Japan,

(2) Universitas Nurul Jadid, Paiton, Probolinggo, Indonesia
Email address: hamidelfath @ gmail.com

Received 2019.10.1
Revised 2019.10.7




NOTE ON E-POLYNOMIALS ASSOCIATED TO Z4-CODES

ORIGINALITY REPORT

16.. 15, 9. 2.

SIMILARITY INDEX INTERNET SOURCES  PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

compgroups.net 60
Internet Source /6
export.arxiv.org 2

Internet Source %

www.neari.org 1 .
Internet Source /6
pubs.rsna.org 1

Internet Source %

"Stochastic Switching Systems", Springer 1 o
Science and Business Media LLC, 2006 °
Publication

n Liu Shuyang, Li Jianping. "A Self-Adaptive 1 o

0

Decoding Scheme for BICM-ID Embedded
Turbo Codes", Physics Procedia, 2012

Publication

=0

Wachspress, Eugene. "The Quadrilateral”, 1 o
Rational Bases and Generalized Barycentrics, °
2016.

Publication




www.hybrid-analysis.com

Internet Source

1o

n E. Haro-Poniatowski, M. Jouanne, J. F. <1 y
Morhange, M. Kanehisa, R. Serna, C. N. °
Afonso. "Size effects investigated by Raman
spectroscopy in Bi nanocrystals”, Physical
Review B, 1999
Publication
theses.gla.ac.uk

Internet Sourgce <1 %

JH e Control Problem", Control Engineering, <1 "
2006
Publication

Joel M. Tendler. "A stiffly stable integration <1 o
process using cyclic composite methods", ACM °
Transactions on Mathematical Software,

12/1/1978
Publication

13 Milici, S.. "Minimum embedding of P"3-designs <1 o
into TS(v,@l)", Discrete Mathematics, 20080206 °
Publication

Xiang-Bin Wang, Xiao-Long Hu, Zong-Wen Yu. <1 o,

"Practical Long-Distance Side-Channel-Free
Quantum Key Distribution", Physical Review
Applied, 2019

Publication




ntrs.nasa.gov <1 o

Internet Source

RN
(@)

H. M. Dufour, D. Burette. "Presentation <1 o
synthetique des methodes semi-iteratives de °
resolution des systemes lineaires", Bulletin
geéodesique, 2008

Publication

Exclude quotes Off Exclude matches Off
Exclude bibliography Off



	surat keteranga plagiasi_072 NUR HAMID.pdf (p.1)
	Nur Hamid 2.pdf (p.2-15)

