LAMPIRAN 1

BERITA ACARA BIMBINGAN SKRIPSI

PANITIA PELAKSANA PROGRAM
FAKULTAS SOSIAL DAN HUMANIORA y

UNIVERSITAS NURUL JADID

Pt
Protwlingiy
1

HItH

PROBOLINGGO JAWA TIMUR b
BERITA ACARA BIMBINGAN SKRIPSI
1. Nama Mahasiswa : Siti Su'aibah
2. NIM . 2042200026
3. Prodi . Pendidikan Matemaltika
4. Judul Skripsi : KODE LINEAR UNTUK STEGANOGRAFI CITRA RGB
5 Konsultasi e T | VS
: KETERANGAN

TANGGAL }!ATE_.IEI BIMBINGAN KONSULTASUARAHAN PARAF
19 - Pemit | W - Prps -

oy 2021 I’;:};’J';ﬂ“ g Sl peess :_e‘gﬂﬁ ‘ pada Magiyg
T 3 =

s 0 | prgram_emcode Prog e

s 2ol e pres demie | et

- dicide <

s 20y '3*““{;“ Posiz (& catam | GO Mot /Membura Tife

:3& el L © proses d ecode (progran)
7 Ere el - fueyran
/05 2024 fuﬁm aﬁm MajE: Sencnfy

e 211 bt o walrs g Pory e ot 151 b

a7 " o
/°" 202 - Penfihgan pesau fa-!n u'Fr:PJe - Mucan_wilai 1110

Yoy 2024 ik perig FMews host (Bag 4)

lo -
/DT 200y |- Bimbingen Bal 7, feastisan - Penatisan, bay 3w y

NGRS N NNNEEN

| 22 fo7 2004 Husil.

™

B NS TR R

6. Bimbingan telah selesai pada tanggal
Dosen Pembimbing,

N

Nur Hamid, Ph.D

54

¢S

LAMPIRAN 2
PROGRAM PYTHON

2.1 Program Steganografi (Penyisipan dan Enkode Pesan)

from PIL import Image, ImageOps
import numpy as np
import random

import matplotlib.pyplot as plt

##KUMPULAN FUNGSI ##
#Mengubah matriks ke bilangan biner
def convert_te_binary_ matrix(matrix}:
binary_matrix = np.vectorize(np.binary_repr)(matrix, width=8)

return binary_matrix

Fungsi untuk mengubah nilai piksel ke bilangan biner
def piksel _biner_split(nilai_piksel):

string_biner = format(nilai_piksel, '0Bb’)

Jika panjang bit 8, stringnya 4. karena 8/2=4,

return string_biner([:4], string_biner[4:]

Fungsi untuk operasi logika biner XOR
def biner_xor(binil, bin2):
return *?,jein{’1' if bl != b2 else '0? for b1, b2 in zip(binl, bin2))
Fungsi untuk proses perkalian antara ele'meg_:ﬁi er dengan m(‘,‘.r(i*k_s generator
~ - ;/
"l,ﬂ‘}_i'a__p iterasi
_—

def perkalian(elemen, generator): ’ _\""
Nilai awal untuk hasil operasi Iﬂ*g_;\j_rl
result = '00000000°
Iterasi menggunakan enumerate

for i, bit in enumerate(elemen):

* L[;\i{

if bit == ?17:
result = biner_xor(result, “gen

return result i//
e

O

\\\ ’// _;Ev\
Fungsi untuk proses perkalian kedua matrika'}écjﬁﬂ?_a{aﬁw}qkh}ﬁ

def perkalian matriks(matriks, generator):

baris, kolom = matriks.shape

result = np.empty({hazia, kolom), dtypg=ohject)

for i in range(baris):

for j in range(kolom):

9¢

result[i, j] = perkalian(matriks[i, j], ggndrator)

return result

def size(gs): Er \‘-; \[r
return len(gs), len{gs[0]) C_‘\\ = ‘/i}(
{Ew. “E\ .
def ope_xor(x:, y): I

int_x = int{x,2)

i

bt

N
int_y = int{(y,2) 2

return int_x~int_y

#return (int(x) - int(y)) % 256

J
*
0
Fungsi untuk mengubah bilangan bulat m-g_n{{d'

J}\P ngan :
def convert_to_binary_8Sbit(elemen): ¥ I]’\]‘_t)]{!‘kﬂ\

return format f:elemen 5 YO8)_

Fungsi untuk menyembunyikan pesan ke dalam gambar dengan posisi acak

def steganografi(matriks_cover, p):

= matrikh_cuver.copy()

gs
bge, kgs

size(gs) #bgs: baris gs, kgs: kolom gs, gs: cover

A~
iner d:oxlk'g'in panjang 8 bit

LS

bp. kp = siza(p}
total_posisi = bgs * kgs
if bp * kp > total_peosisi:
raise ValueError("Pesan terlalu besar untuk disembunyikan di gambar cover.")

al_posizi)]

random.shuffle(pos)

pos = pos[:bp * kpl 3 //-
=
&,
idx = 0 | e
for i in range(bp): e
for j in range(kp): *
entri=matriks_cover [pos[idx1[0]. C
ent:r:i._biner-convert_tc_‘binn_;‘iﬂ;b \.:

gs(pos[idx][01][pes[idx][1]] = 9'13}
#print(entri, pl[il[jl. gs [pcs{'idxj

¥8 Jip ﬁt}m‘u‘u-)

idx += 1

return gs, pos

Fungsi untuk menyimpan posisi ke file
def Bimpan_poaisi(pna y file_path):

with open(file_path, 'w’) as f:

8¢

for p in pos:

f.write(£"{p[0]} {pl[1l1}\n")

Fungsi untuk menghitung MSE

def calculate_mse{original, modified): . \4,; \f-
mse = np.mean({original - modified) w=* 22_‘\\ i) '-/[})
5 o~ B .
return mse - b 7 '

Fungsi untuk menghitung PSNR
def calculate_psnr{original, modified):

mse = calculate_nse(original , me

if mse == 0: # Prevent division h*

return float (’inf’) -0 ‘
max_pixel = 255.0 2N > A
psnr = 20 * np.loglO(max_pixel / np;'.gg{f{}ie_ " A \-—..}'
return psor ‘v }']R-{‘) T',)t__\

##PROSES STEGANOGRAFI®#
Memuat gambar dan pesan
path_cover = ’danau. jpg’

path_pesan = ’'wisuda.jpg’

68

cover = Imags.opan(path_cover)

pesan = Image.open(path_pesan)

Mengubah gambar ke RGB dan matriks
coverRGE = cover.convert ("RGR")

matriks_cover = np.arrayf{coverRGE)

pesanRGB = pesan.convert ("RGE")

matriks_pesan = np.array(pesanRGE)

Pisahkan kanal warna

cover_r, cover_g, cover_b = :overﬂﬁﬁ.iﬁlf_

Simpan setiap kanal warna ke file
cover_r.save(’cover_kanal merah . png’)
cover_g.save(’cover_kanal _hijau.png?)

cuver_h.aave(‘cover_kanal_biru.png’}

peaan_r.aave('peaﬂn_kanal_merah.png’)

pesan_g.save(’pesan_kanal_hijau.png?)

pesan_b.save('pasan_kanal_birn.png’)

#np.set_printoptions (threshold=np.inf)

matriks_cover_r = np.array(cover_r)

Mengubah gambar ke matriks . s Tr
\\ .\h \ { -"‘!‘}
S —

matriks_cover_g = np.array(cover-g_} \""
matriks_cover_b = np.array{cover_b} _\
o
print{"\nMatriks cover Merah(R)") _;_?“
print(matriks_cover_r) —
*
print("\nMatriks cover Hijau(G)") 0
print(matriks_cover_g) —7/-

/ﬁ
(:)xl . - \\.
print("\nMatriks cover Biru(B)") L }']’{tjl{!‘kw\

print(matriks_cover_b)

matriks_pesan_.Tt = np.array(peaan_r}
matriks_pesan_g = np.array(pesan_g)

matriks_pesan_ b = np.array(peaan_b}

19

print("\nMatriks pesan Merah(R)")

print{matriks_pesan_r)

print("\nMatriks pesan Hijau(G)")

print(matriks_pesan_g)

print("\nMatriks pesan Biru(B)")

print(matriks_pesan_b)

#Matriks pesan biner
matriks_cover_biner_r = convert_to_b:
matriks_cover_biner_g = convert_to_

matriks_cover_biner_b = convert_tc_binti}_

%

print("\nMatriks cover biner Merah(R)")

print(matriks_cover_biner_r)

print("\nMatriks cover biner Hijau(G)")

print(matriks_cuver_hiner_g}

print(“\nhatrikﬂ cover bimer Biru{E)"}

print(matriks_cover_biner_b)

09

#Matriks pesan biner

matriks_pesan_biner_r = convert_to_binary_matrix(matriks_pesan_r)
matriks_pesan_biner_g = convert_to_binary_matrix(matriks_pesan_g)
matriks_pesan_biner_b = convert_to_binary_matrix(matriks_pesan_b)

print("\nMatriks pesan biner Merah(R)")

print(matriks_pesan_biner_r)

print("\nMatriks pesan biner Hijau(G)")

print(matriks_pesan_biner_g)

print("\nMatriks pesan biner Biru(B)")

print(matriks_pesan_biner_b)

Mendapatkan pesan dalam bentuk biner yang terbagl menjadi jdua bagian
biner_split_matriks r = np.vectorize(piksel biner_split) (matriks_pesan_r)
biner _split_matrike g = np.vectorize(piksel_biner_split){matriks_peaan_g)

biner_split_matriks_b = np.vectorize(piksel_biner_split)(matrika_peaan_b}

Matriks hasil dari np.vectorize akan berbentuk (2, H, W), kita ubah menjadi (H, W, 2}

biner_split_matrike r = np.transpose(biner_aplit_matriks_r, o PO EORs 5

€9

biner_split_matriks_g = np.transpose(biner_split_matriks_g, (1, 2, 0))

biner_split_matriks_b = np.transpose(biner_split_matriks_b, (1, 2, 0)}

Mendapatkan bit pertama dan kedua dari masing-masing kanal
x_1l_r = biner_split_matriks_r[:, :,

z_2_r = biner_split_matriks_ r([:, :,

z_1_g = biner_split _matriks_g[:, :,

x_?_g = biner_split_matriks_g[:, :,

x_ 1 b = biner split matriks bl[:, -,

x_2_b = biner_split _matriks_b([:, :,

print("\nPesan bagian bit pertama He:ahb{i*
print(x_1_r[:10, :10])

print ("\nPesan bagian bit kedua Merah(R):")
print(x_2_r[:10, :10])

print("\nPesan bagian bit pertama Hijau(G):")

print(x_1_g[:10, :10])

print("\nPesan bagian bit kedua Hijau{G):")
print(x_2_g[:10, :101)

print("\nPesan bagian bit pertama Biru(B):")

print{x_1_b[:10, :10]) - \\; \f- 7
P gy
- ‘

print(x_2_b[:10, :10])

Matriks Generator
G = np.array ([[’11110000°], ['00111100°],

*

J Ny L

print(G)
> . -~ —,

Melakukan perkalian matriks pesan ﬂ.engan na'ﬁlﬁkilﬁ?{qw};\d\;r‘i masing-masing kanal warna
pesan_bagian_1_r = perkalian matriks(x_1_r, G)

pesan_bagian 2 _r = perkalian matrike(x_ 2 r, G)

print("\nHasil perkalian pesan bagian bit pertama Merah(R):")

print(pesan_bagian_1_r[:10, :10])

print("\nHasil perkalian pesan bagian bit kedua Merah(R):")
print(pesan_bagian_2_r[:10, :10])

pesan_bagian_1_g = perkalian_matriks(z_1_g, G)

pesan_bagian_2_g = perkalian_matriks(x_2_g, G) :
\ AD N { /\}

& -
print("\nHasil perkalian pesan bagian bit-‘ﬁii‘r i

print{pesan_bagian_1_g[:10, :101) __:\ //
— A
Z =
print("\nHasil perkalian pesan bagian bit | p—
print{pesan_bagian_2_g[:10, :101) o i
w x
pesan_bagian_1_b = perkalian matriks (x-1.b C
pesan_bagian_2_ b = perkalian matriks (x_-_24:b4',» ‘\:
= " L'\
——

(jlﬁ v
print("\nHasil perkalian pesan bagian bit pert afﬁf{l{(‘ﬁ‘%\"}\

print(pesan_bagian_1_b[:10, :10]1)

print("\nHasil perkalian pesan bagian bit kedua Biru(B):")
print(pesan_bagian_2_b[:10, :10])

Mendapatkan dimensi gambar pesan dari masing-masing kanal warna

99

tinggi_r, lebar_r = matriks_pesan_r.shape
tinggi_g, lebar_g = matriks_pesan_g.shape
tinggi_b, lebar_b = matriks_pesan_b.shape

Flatten matriks bagian pertama dan kedua
flatten_bagian_1 r = pesan_bagian_ 1_r.flatten ()

flatten_bagian_2_r = pesan_bagian_2_r.flatten()

flatten_bagian_1_g = pesan_bagian_1_g.flatten ()
flatten_bagian 2 g = pesan_bagian 2 _g.flatten()

flatten_bagian_1_b = pesan_bagian_1_b.flatten ()
flatten_bagian 2 b = pesan_bagian_ 2 _b.flatten ()

Gabungkan kedua bagian
gabungan_flatten_r = np.concatenate((flatten_bagian_l_r. flatten_bagian_z_r})
gabungan_flatten_g = np.concatenate((flatten bagian 1 g, flatten bagian 2 _g))

gabungan_flatten_b = np.concatenate((flatten_bagian_1_b, flatten_bagian_2 b))

Reshape menjadi ukuran height x (2 * width)
gabungan_matriks_r = gabungan_flatten_r.reshape((2+tinggi_r, lebar_r}]

gabungan_matriks g = gabungan flatten_g.reshape((2+*tinggi_g, lebar_g))

L9

gabungan_matriks_b = gahungan_flattan_b,reshape((?*tinggi_h, lebar_b))

print{"\nMatriks gabungan kata kode Merah(R):")

print{(gabungan_matriks_r)

print("\nMatriks gabungan kata kode Hijau(G)i")

print{gabungan_matriks_g)

print("\nMatriks gabungan kata kode Biru(Bj:")

print{gabungan matriks_b)

Proses Steganografi: Memyisipkan pesan
hasil_steganografi_r, pos_r = steganografi(matriks cover_r, gabungan_matriks_r)
hasil_stegancgrafi_g, pos_g = ateganografi(matrﬁkg_ggveg;g, gabungan_matriks_g)

hasil steganocgrafi b, pos_b = steganografi(matriks cover b, gabungan matriks_b)

Simpan hasil steganografi untuk verifikasi
Image.fromarray(np.uint8(hasil_steganografi_r)).save("atego_Jamur_r.png")
Image.frnmarray(np.uintB(haﬂil_steganugrafi_g]).save("stego_Jamur_g.png")

Image.fromarray(np.uint8(hasil_steganografi_b)).save("stego_Jamur_b.png")

hasil_stego_rgb = np.stack((hasil_steganografi_r, hasil _steganografli g, haail_ateganografi_b], axis=-1)

89

Konversi matriks pesan tersembunyi ke dalam bentuk gambar
hasil_stego = Image.fromarray(np.uint8(hasil_stego_rgh))

Image.fromarray(np.uint8(hasil_stege)).save("stego_Jamur_rgb.png")

Menyimpan posisi ke file

simpan_posisi(pes_r, "posisi_r.txzt")

Mengubah gambar ke RGE

stegoRGE = hasil_stego.convert ("RGBE")

Mengubah Gambar stego ke bentuk matriks

matriks_stego = np.array(stegoRGE)

Pisahkan kanal warna

69

stegoRGB_r, stegoRGE_g, stegoRGB_b = stego

matriks_stegoRGB_r = np.array(stegoRGB_r)

matriks_stegoRGB_g = np.array(stegoRGB_g)

RGB.split(}

matriks_stegoRGB_b = np.array(stegoRGB_b) \ \\.) \{-
™\ s
i S {
print("\nMatriks stego Merah(R)") e '
print(matriks_stegoRGB_r) J;:N
S
print("\nMatriks stego Hijau(G)") -
print(matriks_stegoRGE_g) e
*
print("\nMatriks stego Biru(B)") e
print{matriks_stegoRGB_b) '<:’
/{ .
A

Menghitung MSE
original _r= np.array(matriks_cover_r)

modified_r= np.array{matriks_ateguRGB_rJ

original _g= np.array(matrika_cover_g)

modified_g= np.array(matriks_stegoRGB_g)

F

0L

original_b= np.array(matriks_cover_b)

modified_b= np.array(matriks_stegoRGB_b)

mse_r = calculate_mse(original_r, modified_r) - _} \{-
print (f"MSE_r: {mse_r}") H\\ ' ‘ ‘/l}l/ .
Q- 7

mse_g = calculate mse(original g, modifi

print(f"M3E_g: {mse_g}") .

mse_b = calculate mse(original b, mo

7
&,
=
print (f"MSE_b: {mse_b}") * *
ﬂ
5 S
x

1 ‘lk‘”" eganografi
S
>

print(f"Nilai PSNR Gabungan (RGE): {psnr_valu'a_.fglj);_E{W?‘iw‘t'_

psnr_value_rgbh = calculate_p_snr(matriks_:cdv&) ma

##Hasil Stego##

Buat subplot untuk menampilkan keempat gambar

fig, axs = plt.subplots(2, 2, figsize=(10, 10))

IL

Tampilkan gambar-gambar pada subplot
axs [0, 0].imshow(hasil_steganografi_r, cmap='gray'}

axs [0, 0].set_title(’'Hasil Steganografi R?)

axs [0, 0].axis('off?)) \g_) \f- ‘/
- Lad L
0 |

=
axs[0, 1].imshow(hasil_stegancgrafi_g, cmap=
axs [0, 1].set_title(’Hasil Steganograﬁ!m ¥

axs [0, 1].axis('off’)

axs[1, 0].imshow(hasil steganografi
axs[1, 0].set_title(’Hasil Steganogf'&f}*’ B
axs[1, 0].axis('off?)
axs[1, 1].imshow(hasil stego_rgh) f) 2
axs[1, 1].set_title(’'Hasil Steganografi RGB') \)’]
axs[1, 1].axis('off’)

Tampilkan subplet
plt.show ()

\ :
ROBO

L

2.2 Program Steganografi (Ekstraksi Pesan, Dekode dan Mencari Nilai PSNR)

from PIL import Image, ImageQps
import numpy as np
import randem

import matplotlib.pyplot as plt

##KUMPULAN FUNGSI##
#Mengubak matriks ke bilangan biner
def couvart_tu_hinary_matrix(matrix):
binary matrix = np.ve:torize(np.binary_repr)(matrix, width;é)

return binary_matrix

Fungei untuk mengubah nilai piksel ke hllangan biner
def piksel_biner_split(mnilai_piksel):
string_biner = format{nilai_piksal, "08b'}

Jika panjang bit 8, stringnya 4. karena 8/2=4. atau mnanti menyesuaikan dengan panjang bit dan dib)

return string_biner[:4], string_biner[4:]

Fungsi untuk operasi logika biner XOR

def biner_xor{binl, bin2):

return *'.join{(?1® if bl != b2 else '0' for bl, b2 in zip(binl, bin2))

€L

Fungsi untuk proses perkalian antara elemen biner dengan matriks generator
def perkalian(elemen, generator):

Nilai awal untuk hasil cperasi XOR yang akan dilakukan pada setiap iterasi

result = '00000000° - \\,) \f-

Iterasi menggunakan enumerate kﬁ\\ ' i '-/\}]
& - - F

for i, bit in enumerate(elemen): et /

if bit == ?17:

result = bine:r_xor(result-.:_;__gg ’ -:j
return result =3 p=—
— w
Fungsi untuk proses perkalian kedua *ﬁt *
def perkalian matriks(matriks, gener&tﬂﬂ: C
baris, kolem = matriks.shape /./ ‘\:
- '-L\

result = np.empty((baris, kolom), -dt-ypet;'o)lig_ \--..
‘Y Db OV
| PROBO
for i in range(baris):
for j in range(kolom):

result[1, j] = perkalian{(matriks[i, j], generator)

return result

L

def Eiza(_gs)x
return len(gs), len(gs[0])

def ope_xor(x, y):

int_x = int(x,2) . . |
g S AS NUp
int_y int(y,2) Lﬁ\ \(

return int_x"int_y

#return (int(x) = int{y}) % 256 | ™
g

Fungsi untuk mengubah bilangan buh'._f_.-_‘u_

def convert_to_binary_8bit(elemen): * *
return format(elemen, '08hb?) 0 4 C
v‘/' 5
Fungsi untuk menyembunyikan pesan ke dqla"}-ﬁm ar de posisdi acak
def steganografi(matriks_cover, p): v)’]R.-{‘ -}‘i-?]t_\\

gs = matriks_cover.copy()

bgs, kgs = size(ga) #bgs: baris gs, kgs: kolom gs, gs: cover
bp, kp = aize(p)

total posisi = bgs * kge

if bp * kp > total_posisi:

raise ValueError("Pesan terlalu besar untuk disembunyikan di gambar

cover.")

SL

pos = [(i // kgs, i % kgs) for i in range(total_posisi)]
random.shuffle(pos)
pos = pos[:bp * kpl

TdEi= o H\

for i in range(bp):

for j in range(kp):
entri=matriks_cover [pos [idx] [
entri_biner=convert_to_binar

gs[pos[idx][0]][pos [1dx][’ﬂ‘j

#print(entri, plil[j], g=[lpos *
idx 4= 1 =0 O
return gs, pos /'/ > &\.::
J\ \ :
F i untuk i isi ke fil ‘Y p 1O\
ungsi un menyimpan posisi ke e)’ {{‘ ‘}i“t]

def simpan_posisi f:poa , file_path):
with open(file_path, ’w’) as f:
for p in pos:

f.owrite(£"{p[0]} {p[1]1}\n")

Fungsi untuk memuat posisi dari file

9L

def muat_pusisi{fila_path}:
pos = []
with open(file_path, 'r’} as f:
lines = f.readlines()

for line in lines:

AS NUp

1
x, ¥y = map(int, line ..strip().spl@?{)i)-
- -
pos.append ((x, ¥y)) N

return pos '/
7,
v -
Fungsi untuk mendekode pesan dari gambap o
def dekode_steganografi(gs, pos, ma_rﬂf’! ~t
dekode_pesan = [] w x
i . - -~
for p in pos: J :“
#mengubah masing-masing entri ke-‘ﬁ;ﬂn N
> %)

pesan_biner = canvert_to_hinary_'s:b{fgﬁzt ? —
cover_biner = convert_to_binary_8bit{matriks cover \]", 1

¥ (matriksie YW{?\@ pI11D)
dekode _pesan.append(ope_xor (pesan_biner ,cover_biner))

return dekode_pesan

Fungsl untuk menghitung MSE

def calnnlate_mﬂe(uriginal. modified):

mee = np.mean((original - modified) =*% 2)

EE

raturn mse

Fungsi untuk menghitung

max_pixel = 255.0

return psnr

def pesan_4bit (kata_kode):
a = int(kata_kode[1])
b = (int(kata_kode([3])
¢ = int(kata_kode[7])
d = {int(kata_kode[0])}

return np.array (fa, b,

#Fungsi untuk konversi bin

def konversi_biner_ke_int(

mse = calculate_mse(original, modified) - _) \ {-
if mse == 0: # Prevent division by zero_ﬁ\\ ' ‘ /\}
& -
return float (’inf’') R

psnr = 20 = np.logl0(max_pizel / ng“s

#Fungsi untuk pengembalian kata kode Ke b

PSNR

def calculate_psnr{original, modified):

N

—_—

=

0

_.-f
- L k"'d./';[,ﬂ'
in ata_kode }i

>
ey O
= O
¥ PROROM
- int(kata_kode[1])) % 2
c, d])

er ke integer

matriks) :

return np.array([[int (bit, 2} for bit in baris] for baris in matriks])

8L

#Fungsi untuk membuat matriks dari hasil pesan biner 4 bit
def proses_matriks(matriks):
hasil = []
for baris in matriks:
hasil_baris = []
for elemen in baris:
kata_kode = format(elemen, '08L*}
pesan_kode = pesan_4bit(kata_kode)
pesan_biner = ’’.join(map(str, pesan_kode))
hasil_baris.append(pesan_biner)
hasil .append (hasil_baris)

return np.array(hasil)

#Fungsi untuk menggabungkan 2 matriks pesan biner 4-bit menjadi -8-bit
def gabungkan_matriks(matriksl, matriks2):
hasil_gabungan = []
for i in range(matriksl.shape[0]):
baris_gabungan = []
for j in range(matrikel.shape[1]):
elemen_gabungan = matriks1[i, j] + matrike2[i, j]

baris_gabungan.append(elemen_gabungan)

6L

hasil_gabungan.appand(haris_gahungan)

return np.array(hasil_gabungan)

##PROSES STEGANOGRAFI## . \\g; \%-{
1\ ~
Memuat gambar dan pesan L-‘\
o B

path_cover = ’'peles. jpg’ :
path_pesan = ’jamur.jpg’ Y /

2 — f

o

path_stepgo = 'stego_Jamur_rgh.png’

=
cover = Image.open(path_cover) -
pesan = Image.open(path_pesan) »
0

stego = Image.open(path_stego)

7

Mengubah gambar ke RGE dan matriks (:)\

—

b ®

PROBO

coverRGE = cover.convert("RGE")

matriks_cover = np.array(coverRGE)

pesanRGE = pesan.cunvert('ﬂGB“}

matriks_pesan = np.array(pesanRGE)

stegoRGB = stego.convert ("RGE")

matriks_stego = np.array(stagoﬂGE)

Pisahkan kanal warna

cover_r, cover_g, cover_b = coverRGB.split ()
pesan_r, pesan_g, pesan_b = pesanRGB.split ()
stego_r, stego_g, stego_b = stegoRGE. apllt(3L$\\

Mengubah gambar ke matriks
matriks_cover_r = np.array(cover_r)}
matriks_cover_g = np.array(cover_g)

matriks_cover_b = np.array(cover_b)

print("\nMatriks cover Merah(R)") e

print(matriks_cover_r)

AS N,
R,

<,
print("\nMatriks cover Hijau(c)“) \ f]’ L]% t\\

print (matriks_cover_g)

print("\nHatrikB cover Biru(B)")

print(matriks_cover_b)

matriks_pesan_r = np.array(pesan_r)

I8

matriks_pesan_g = np.array(pusan_g}

matriks_pesan_b = np.array(pesan_b)

matriks_stego_r = np.array(stego_r)
matriks_stego_g = np.array{stego_g)}

matriks_stego_b = np.array(stego_b)

print("\nMatriks stego Merah(R)")

print(matriks_stego_r)

print{"\nMatriks stego Hijau(G)")

print(matriks_stego_g)

print("\nMatriks stego Biru(B)")
print(matriks_stego_b)

#Matriks pesan biner

matriks_cover_biner_r = convert_to_hinary_matrix(matriks_cover_r)
matriks_cover_biner_g = convert_tu_hinary_matrix(m&trika_cuver_g}
matriks_cover_biner_b = conver:_to_binary_matrix(matrika_cover_b)

print("\nMatriks cover biner Merah(R)")

8

print(matriks_cuver_hiner_r}

print("\nMatriks cover biner

print(matriks_cover_biner_g)

print("\nMatriks cover biner

print{matriks_cover_biner_b)

matriks_pesan_biner_r = convert_to_binary_matrixCmitriks_pesan_n}
matriks_pesan_biner_g = convert_to_binary_nntrix(natriks_pe!an_gj

matriks_pesan_biner_b = convert_to_binary matrix(matriks_pesan_b)

matriks_stego_biner_r = convert_ta_binary_matrixfnatriks_stegﬁ_r)
matriks_stego_biner_g = convert_ta_binarj_mattﬁﬁ(hatrika_ﬁtégg_gJ

matriks_stego_biner_b = convert_to_binary matrix(matriks_stego_b)

print("\nMatriks stego biner

print(matrika_stego_biner_r)

print("\nMatriks stego biner

print(matriks_stego_hiner_g]

Hijau(G)")

Biru(B)")

Merah (R)")

Hijau(G)")

€8

print ("\nMatriks stego biner Biru(R)")

print(matriks_stego_biner_b)

Mendapatkan pesan dalam bentuk biner yang terbagi menjadi dua bagian
biner_split_matriks_r = np.vectorize(piksel _biner_split) (matriks_pesan_r)
biner_split_matriks_g = np.vectorize(piksel biner split)(matriks pesan_g)

biner_split_matriks_b = np.vectorize(piksel_biner_split) (matriks_pesan_b)

Matriks hasil dari np.vectorize akan berbentuk 2, ", W), ¥ita ubah menjadi (H, W, 2)
biner_split_matriks_r = np.transpose(binez_split;matriks_r, EIH.E. 0))
biner_split_matriks g = np.transpose(biner split matriks g, (1, 2, 0))

biner_split_matriks b = np.transpose{biner split_matriks b, ™(1, 2, 0})

Mendapatkan bit pertama dan kedua dari masing-masing kanal

¥_1_ r = biner_split_matriks_r([:, :, 0]
¥_2_r = biner_split_matrika_r[:, :, 1]
£ 1_g = biner_split_matriks_g[:, :, 0]
x_2_g = biner_split_matrika_gl:, :, 1]
x_1_b = biner_split_matriks_b([:, :, 0]

£_2_b = biner_split_matriks_b[:, :, 1]

Matriks Generator
G = np.array([[’11110000°], ['00111100'], [?*0O0001111'], [?101010107]])

- AS NI

Melakukan perkalian matriks pesan dengan mg?kéks' enerator
& |

e

pesan_bagian_1_r = perkalian_matriks (__x_"l‘-:l.fs‘_;:_g

) N
pesan_bagian_2_r = perkalian matriks(x_2.r,

5 2
< et
pezan_bagian_1 g = perkalian matriks -
pesan_bagian_2_ g = perkalian matriks(: ®x
- o~
= S
pesan_bagian_1_b = perkalia_n_matriks(x_l@,\ ~ W
= ‘_L"\

N

pesan_bagian_2 b = pe:kalian_matriks(x_2_b_,(£_7)\ —
¥ PROBO

Mendapatkan dimensi gambar pesan dari masing-masing kanal warna
tinggi r, lebar_ r = .matrika_peaan_r.shape
tinggi_g, lebar_g = matriks_pesan_g.shape

tinggi b, lebar b = matriks_pesan_b.shape

Flatten matriks bagian pertama dan kedua

/ﬁ)¥1 masing-masing kanal warna

ce

flatten_bagian_1_r

flatten_bagian_2_r

flatten_bagian_1_g
flatten_bagian_2_g

flatten_bagian_1_b
flatten_bagian 2 b

pesan_bagian_1_r.flatten()

pesan_bagian_2_r.flatten ()

pesan_bagian_1_g.flatten ()
pesan_bagian_2_g.flatten ()

pesan_bagian_1_b.flatten ()
pesan_bagian 2 _b.flatten ()

Gabungkan kedua bagian

gabungan_flatten_r
gabungan_flatten_g
gabungan_flatten_b

np.concatenate((flatten bagian_ 1 r, flatten bagian 2 r})
np.concatenate ({flatten bagian 1_ g, flatten bagian 2 _g))
np.concatenate ((flatten _bagian 1 b, flatten bagian 2 b))

Heshape menjadi ukuran height x (2 * width]

gabungan_matriks _r
gabungan matriks g

gabungan _matriks_b

gabungan_flatten_r.reshape((2#tinggi_r, lebar_r))
gabungan flatten_g.reshape ((2+tinggi_g, lebar_g))
gabungan_flatten_ b.reshape((2+#tinggi_ b, lebar_b))

Proses Dekode: Mengeksatrak pesan

Memuat posisi dari file

98

poeisi_termuat_r = muat_posisi("posisi_r.txt"}
posisi_termuat_g = muat_posisi("posisi_g.txt")

posisi_termuat_b = muat_posisi("posisi_b.txt")

Dekode pesan dari gambar hasil steganografi

pesan_tersembunyi_r = dekode_steganografi(matriks stego r, pogisi termuat_r, matriks_cover_r)
pesan_tersembunyi_g = dekode_steganografi (matriks_stego_g, posisi_termuat_g, matriks_cover_g)
pesan_tersembunyi_b = dekode_stegancgrafi(matriks_stego b, posigi termuat_b, matriks_cover_b)

Ubah pesan tersembunyi ke dalam bentuk matriks dengan elemen bilangan biner B bit
bp_r_r, kp_r_r = gabungan matriks_r, shape

matriks_pesan_tersembunyi_r = np.array(pesan_teérsembunyi r).reshape(bp r r, kp_r_r)

bp_r_g, kp_r_g = gabungan _matriks_g.shape

matriks_pesan_tersembunyi_g = np.array{pesan_tersembunyi_g).reshape(bp_r_g, kp_r_g)

bp_r_b, kp_r_b = gabungan matriks_b.shape

matrike _pesan_tersembunyi b = np.array(pesan_tersembunyi_b).reshape(bp_r_b, kp_r_b)

#Matriks pesan biner
pesan_tersembunyi_r = np.vecturize(cunvert_to_binary_8hit)

matriks _pesan_tersembunyi_bin_r = pesan_tersembunyi_r(matriks_pesan_tersemhunyi_r)

L8

pesan_tersembunyi_g = np.vectorize(convert_to_binary_8bit)

matriks_pesan_tersembunyi_bin_g =

pesan_tersembunyi_g(matriks_pesan_tersembunyi_g)

pesan_tersembunyi_b = np.vectorize(convert_to_binary_8bit)

matriks_pesan_tersembunyi_bin_ b =

pesan_tersembunyi b(matriks_pesan_tersembunyi_b)

print("\nPesan tersembunyi Merah(R):")

print(matriks_pesan_tersembunyi_bin_r)

print("\nPesan tersembunyi Hijau(G):")

print(matriks_pesan_tersembunyi_bin_g)
print("\nPesan tersembunyi Biru(B):")

print({matriks_pesan_tersembunyi_bin_b}

##Mengembalikan kata kode yang sudah digabung##

Flatten matriks gabungan

flatten_gabungan_ r = matrika_pesan_tersembunyi_bin_r.flatten()

flatten_gabungan_g
flatten_gabungan_b

matriks_pesan_tersembunyi_bin_g.flatten(}

matriks_pesan_ tersembunyi_bin b.flatten()

88

Tentukan ukuran asli masing-masing matriks

size_matriks_r = tinggi_r * lebar_r

size_matriks_g = tinggi_g * lebar_g

size_matriks_b = tinggi_b * lebar_b

Pisahkan menjadi dua matriks

flatten_bagian 1 r =

flatten_bagian_2_1r =

flatten _bagian 1 g =
flatten_bagian_ 2 g =

flatten_bagian_ 1 b =
flatten_bagian 2 b =

Reshape kembali ke
matrike _bagian 1 _r =

matriks_bagian_ 2 _r =

flatten_gabungan r[:size matriks r]

flatten_gabungan_r [size matriks-r:}

flatten gabungan g[:size matriks gl

flatten_gabungan glsize matriks g:1]

flatten _gabungan b[:size matriks b]
flatten_gabungan blsize matriks_b:l

ukuran asli
flatten_bagian_1_r.reshape((tinggi r, lebar_r))

flatten_bagian_?_r.reahape((tinggi_r, lebar_r))

print("\nKata kode bagian 1 Merah(R):")

print(matrike_bagian_1_r)

68

print("\nKata kode bagian 2 Merah(R):")

print(matriks_bagian_2_r)

) I\ L1 N
matriks_bagian 2 g = flattan_‘bagian_z_g.r.eah@;?b tinggi g, '1&§)al,|'ﬁg".’))
& ' /

B i

print("\nKata kode bagian 1 Hijau{G):';_':\

matriks_bagian_1_g = flattsn_‘ba.gian_l_g.resha;pu_((t_inﬁgib%.(lebar_g))

7
print(matriks_bagian_1_g) ‘:-;“‘ ":J
f e
print("\nKata kode bagian 2 Hijau(G):") i
print{matriks_bagian_2_g) w *
- P
o A

matriks_bagian 2 b = flatt-en_‘bagian_Q_‘b.res){?ﬁ i b,
‘V n
PRO

print ("\nKata kode bagian 1 Biru(B):")

print(matriks_bagian_1_b)

print("\nKata kode bagian 2 Biru(B):")
print(ma'triks_hagian_Z_'h)

Matriks biner

matriks_bagian_pertama_r = np.array(matriks_bagian_1_r)

matriks_bagian_kedua_r = np.array(matriks_bagian_2_r)

matriks_bagian pertama_g = np.arrayf{matriks bagian 1 _g)

matriks_bagian_kedua_g = np‘array(matriks_hagiaﬂ_Eég}

matriks_bagian_pertama_b = np.array(matriks_bagian_1_b)

matriks_bagian_kedua_b = np.array(matriks_bagian_ 2.b)

Konversi
matriks_1_r

matriks _2_r

matriks_1_g

matriks 2 _g

matrikse_1_b

matriks_2_b

string biner ke integer

konversi_biner_ke_int (matriks_bagian pertama r)

konversi_biner_ke_int(matriks_bngiqn_kgdug_;)

konverai_biner_ke_int(matriks_bagian_pertam&_g}

konversi_biner _ke_int (matriks_bagian_ kedua_g)

konversi_biner_ke_int(matriks_bagian_pertama_b}

konverai_biner_ke_int(matriks_bagian_kedua_b)

Proses pesan dari setiap elemen matriks

16

pesan_bagian_pertama_r = prusas_matriks(matriks_i_r)

pesan_bagian_kedua_r = proses_matriks (matriks_2_r)

pesan_bagian_pertama_g = proses_matriks(matriks_1_g)

pesan_bagian_kedua_g = proses_matriks(matriks_2_g)

pesan_bagian_pertama_b = proses_matriks(matriks_l_b}

pesan_bagian_kedua b = proses_matriks (matriks 2 b)

Gabungkan matriks

hasil_gabungan r =

hasil _gabungan g =

hasil_pgabungan_ b =

matriks_gabungan_r=
matriks_gabungan_g=

matriks _gabungan_b=

gabungkan_matriks (pesan_bagian pertama r, pesan_bagian_kedua_r)
gabungkan matriks{pesan_bagian pertama g, pesan_bagian_kedua_g)

gabungkan _matriks (pesan_bagian_pertama_ b, pesan_bagian_kedua_b)

konversi_biner_ke_int(hasil_gabungan r)
konverai_biner_ke_int(haeil_gabungan_g)

konversi_biner ke_int (hasil _gabungan b)

Simpan hasil steganografi untuk verifikasi

Image.fromarray (np.
Image.fromarray{np.

Image.fromarray(np.

uint8(matriks_gabungan_r)).save("hasil_r.png")
uint8(matriks_gabungan_g)).save("ha=sil_g.png")

uint8 (matrike_gabungan_b)).zave{"hasil b.png")

6

hasil_pesan_rgh = np.stack((matriks_gabungan_r, matriks_gabungan_g, matriks_gabungan_b), axis=-1)

Konversi matriks pesan tersembunyi ke dalam bentuk gambar
hasil_pesan = Image.fromarray(np.uint8(hasil_pesan_rgh))

Image.fromarray(np.uint8(hasil_pesan)).save("hasil wisuda rgb.png")

print("\nPesan bagian bit pertama Merah(R):\mn", pe

print("\nPesan bagian bit kedua Merah(R):\m", pesan bagian kedua_r
print("\nHasil gabungan matriks pesan Hernhfﬁ):\n”?:hasil;g&bun&t@;r)

ama_g)
print{"\nPesan bagian bit kedua Hijau(@):\n!", pesan_bagian kedua g)

print("\nPesan bagian bit pertama Hijau(G):\n'"4 pesanibagianupe

print("\nHasil gabungan matriks pesan Hijau(G}iNn'; hasil ungan_g)

print("\nPesan bagian bit pertama Biru(E):\n", peaan_bagian_pertama_b)
print("\nPesan bagian bit kedua Biru(B):\n", pesan_bagian_kedua_b)

print("\nﬁasil gabungan matriks pesan Biru(B) :\n", hasil_gabungan_b)

##Hasil Pesan##
Buat subplot untuk menampilkan keempat gambar

fig, axs = plt.subplots(2, 2, figsize=(10, 10))

€6

Tampilkan gambar-gambar pada subplot

axs [0,
axs [0,

axs [0,

axs [0,
axs [0,

axs [0,

axs[1,
axs[1,

axs[1,

axs[1,
axs[1,

axs[1,

7
1].axis('off’) iy .,J
e =t
0]. imshow (matriks_gabungan_b, Eﬁlu w
0].set_title('Pesan yang diek_“_*ﬁk. *

01.axis('off’) O ¥ O

o AT
\ LS

0] .imshow (matriks_gabungan_r, cmap=’gray’)

0].set_title(’Pesan yang diekstrak R?)

01.axis('off’) e QS N7
A4 {"'f(,/

11. imshow(matriks_gabungan_g, cmap=

1].imshow(hasil_pesan_rgh) (:)

2 i , ; . WD 2
1].set_title('Pesan yang diekstrak RGE } {: Rtﬂ"’t\\
1].axis('off?)

b ®

Tampilkan subplet

plt.show ()

##Gambar Lengkap RGE

fig, axs

plt.subplots(2, 2, figsize=(10, 10})

Tampilkan gambar-gambar pada subplot

axs [0,
axs [0,

axs [0,

axs [0,
axs [0,

axs [0,

axs[1,
axs[1,

axell,

axs[1,
axs[1,

axs[1,

0l.
0l.
01

11.
i1.
11.

01,

01.
01.

1].
11.
11.

imshow (matriks_cover)

set_title('Cover RGB') . " 1
axis('off?) \\ \H \ {/l}
: -y
" \:ﬁ-" o
imshow (matriks_pesan) J__:\ /

set_title{’'Pesan yang disis

axis(’eff’)

i
imshow(stego)
axis(’off?)

inahow(hasil_pesan_rgb')

axis('off?)

Tampilkan subplot

plt.show ()

S6

LAMPIRAN 3
KETERANGAN HASIL CEK PLAGIASI

YAYASAN NURUL JADID PAITON 10 Waarisi fonbud

FAKULTAS SOSIAL DAN HUMANIORA nrangear Pt

reabolingge 67591

UNIVERSITAS NURUL lADlD BT R T

PRUBOL'NGGO]AWA TIMUR L T T e |
KE IL. CHECK PLAGIAS|

Yang bertanda langan di bawah inl, tim md: giasi Fakultas Sasial dan Humaniora
1al

lah ditakukan check plagiasi dengan
Quoles dan Exclude B

menerangkan dei nx r yg"',-ha
i L

persentase 24% (| Pada tugas akhir/skripsi

¢

96

LAMPIRAN 4
HASIL CEK PLAGIASI

main_fiks - Siti Su‘aibah.pdf

DRIGINALITY REPOET

28 - 24 - B 6

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIAGY SOURCES

- repository.i

InternetSourge

-:\ ; / 2%

u Intermie: Soi . . { .
B cigiib.uinsu acid | o !

Internet Source
repository.unhas.ac.id " %
= Internet Source
123dok.com 1 %

Imernet Source

9]

RIWAYAT HIDUP

SITI SU’AIBAH berdomisili di Desa Randumerak,
Kecamatan Paiton, Kabupaten Probolinggo. Penulis lahir di
Probolinggo pada tanggal 16 Juni 2002, Anak kedua dari
dua bersaudara psangan Bapak Syamsuddin dan Ibu Sulastri.

Pendidikan dasarnya ditempuh di MI Azzaimiyah III dan selesai

pada tahun 2014. Pendidikan menengah pertamanya di SMP
Nurul Jadid (SMPNJ), selesai tahun 2017. Pendidikan menengah atasnya ditempuh
di SMA Nurul Jadid (SMANJ), selesai tahun 2020. Penulis menempuh sarjana
Pendidikan Matematika di Fakultas Sosial dan Humaniora Universitas Nurul Jadid
Paiton Probolinggo.

Seiring dengan berbagai aktivitas yang penulis tekuni selama perkuliahan,
penulis juga dapat menyelesaikan tugas akhir atau skripsi dengan judul
"Kode Linear untuk Steganografi Citra RGB! sebagai salah satu syarat untuk
menyelesaikan studi pendidikan jenjang program Strata Satu (S1) Pendidikan

Matematika.

98

