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LAMPIRAN 2
PROGRAM PYTHON

2.1 Program Steganografi (Penyisipan dan Enkode Pesan)

from PIL import Image, ImageOps
import numpy as np
import random

import matplotlib.pyplot as plt

##KUMPULAN FUNGSI ##
#Mengubah matriks ke bilangan biner
def convert_te_binary_ matrix(matrix}:
binary_matrix = np.vectorize(np.binary_repr)(matrix, width=8)

return binary_matrix

# Fungsi untuk mengubah nilai piksel ke bilangan biner
def piksel _biner_split(nilai_piksel):

string_biner = format(nilai_piksel, '0Bb’)

# Jika panjang bit 8, stringnya 4. karena 8/2=4,

return string_biner([:4], string_biner[4:]




# Fungsi untuk operasi logika biner XOR
def biner_xor(binil, bin2):
return *?,jein{’1' if bl != b2 else '0? for b1, b2 in zip(binl, bin2))
# Fungsi untuk proses perkalian antara ele'meg_:ﬁi er dengan m(‘,‘.r(i*k_s generator
~ - ;/
"l,ﬂ‘}_i'a__p iterasi
_—

def perkalian(elemen, generator): ’ _\""
# Nilai awal untuk hasil operasi Iﬂ*g_;\j_rl
result = '00000000°
# Iterasi menggunakan enumerate

for i, bit in enumerate(elemen):

* L[;\i{

if bit == ?17:
result = biner_xor(result, “gen

return result i//
e

O

\\\ ’// _;Ev\
# Fungsi untuk proses perkalian kedua matrika'}écjﬁﬂ?_a{aﬁw}qkh}ﬁ

def perkalian matriks(matriks, generator):

baris, kolom = matriks.shape

result = np.empty({hazia, kolom), dtypg=ohject)

for i in range(baris):

for j in range(kolom):
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result[i, j] = perkalian(matriks[i, j], ggndrator)

return result

def size(gs): Er \‘-; \[ r
return len(gs), len{gs[0]) C_‘\\ = ‘/i}(
{Ew. “E\ .
def ope_xor(x:, y): I

int_x = int{x,2)

i

bt

N
int_y = int{(y,2) 2

return int_x~int_y

#return (int(x) - int(y)) % 256

J
*
0
# Fungsi untuk mengubah bilangan bulat m-g_n{{d'

J}\P ngan :
def convert_to_binary_8Sbit(elemen): ¥ I]’\]‘_t )]{!‘kﬂ\

return format f:elemen 5 YO8 )_

# Fungsi untuk menyembunyikan pesan ke dalam gambar dengan posisi acak

def steganografi(matriks_cover, p):

= matrikh_cuver.copy()

gs
bge, kgs

size(gs) #bgs: baris gs, kgs: kolom gs, gs: cover

A~
iner d:oxlk'g'in panjang 8 bit
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bp. kp = siza(p}
total_posisi = bgs * kgs
if bp * kp > total_peosisi:
raise ValueError("Pesan terlalu besar untuk disembunyikan di gambar cover.")

al_posizi)]

random.shuffle(pos)

pos = pos[:bp * kpl 3 //-
=
&,
idx = 0 | e
for i in range(bp): e
for j in range(kp): *
entri=matriks_cover [pos[idx1[0]. C
ent:r:i._biner-convert_tc_‘binn_;‘iﬂ;b \.:

gs(pos[idx][01][pes[idx][1]] = 9'13}
#print(entri, pl[il[jl. gs [pcs{'idxj

¥8 Jip ﬁt}m‘u‘u- )

idx += 1

return gs, pos

# Fungsi untuk menyimpan posisi ke file
def Bimpan_poaisi(pna y file_path):

with open(file_path, 'w’) as f:
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for p in pos:

f.write(£"{p[0]} {pl[1l1}\n")

# Fungsi untuk menghitung MSE

def calculate_mse{original, modified): . \4,; \f-
mse = np.mean({original - modified) w=* 22_‘\\ i ) '-/[} )
5 o~ B .
return mse - b 7 '

# Fungsi untuk menghitung PSNR
def calculate_psnr{original, modified):

mse = calculate_nse(original , me

if mse == 0: # Prevent division h*

return float (’inf’) -0 ‘
max_pixel = 255.0 2N > A
psnr = 20 * np.loglO(max_pixel / np;'.gg{f{}ie_ " A \-—..}'
return psor ‘v }']R-{‘ ) T',)t_\_\

##PROSES STEGANOGRAFI®#
# Memuat gambar dan pesan
path_cover = ’danau. jpg’

path_pesan = ’'wisuda.jpg’
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cover = Imags.opan(path_cover)

pesan = Image.open(path_pesan)

# Mengubah gambar ke RGB dan matriks
coverRGE = cover.convert ("RGR")

matriks_cover = np.arrayf{coverRGE)

pesanRGB = pesan.convert ("RGE")

matriks_pesan = np.array(pesanRGE)

# Pisahkan kanal warna

cover_r, cover_g, cover_b = :overﬂﬁﬁ.iﬁlf_

# Simpan setiap kanal warna ke file
cover_r.save(’cover_kanal merah . png’)
cover_g.save(’cover_kanal _hijau.png?)

cuver_h.aave(‘cover_kanal_biru.png’}

peaan_r.aave('peaﬂn_kanal_merah.png’)

pesan_g.save(’pesan_kanal_hijau.png?)




pesan_b.save('pasan_kanal_birn.png’)

#np.set_printoptions (threshold=np.inf)

matriks_cover_r = np.array(cover_r)

# Mengubah gambar ke matriks . s Tr
\\ .\h \ { -"‘!‘}
S —

matriks_cover_g = np.array(cover-g_} \""
matriks_cover_b = np.array{cover_b} _\
o
print{"\nMatriks cover Merah(R)") _;_?“
print(matriks_cover_r) —
*
print("\nMatriks cover Hijau(G)") 0
print(matriks_cover_g) —7/-

/ﬁ
(:)xl . - \\.
print("\nMatriks cover Biru(B)") L }']’{tjl{!‘kw\

print(matriks_cover_b)

matriks_pesan_.Tt = np.array(peaan_r}
matriks_pesan_g = np.array(pesan_g)

matriks_pesan_ b = np.array(peaan_b}
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print("\nMatriks pesan Merah(R)")

print{matriks_pesan_r)

print("\nMatriks pesan Hijau(G)")

print(matriks_pesan_g)

print("\nMatriks pesan Biru(B)")

print(matriks_pesan_b)

#Matriks pesan biner
matriks_cover_biner_r = convert_to_b:
matriks_cover_biner_g = convert_to_

matriks_cover_biner_b = convert_tc_binti}_

%

print("\nMatriks cover biner Merah(R)")

print(matriks_cover_biner_r)

print("\nMatriks cover biner Hijau(G)")

print(matriks_cuver_hiner_g}

print(“\nhatrikﬂ cover bimer Biru{E)"}

print(matriks_cover_biner_b)
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#Matriks pesan biner

matriks_pesan_biner_r = convert_to_binary_matrix(matriks_pesan_r)
matriks_pesan_biner_g = convert_to_binary_matrix(matriks_pesan_g)
matriks_pesan_biner_b = convert_to_binary_matrix(matriks_pesan_b)

print("\nMatriks pesan biner Merah(R)")

print(matriks_pesan_biner_r)

print("\nMatriks pesan biner Hijau(G)")

print(matriks_pesan_biner_g)

print("\nMatriks pesan biner Biru(B)")

print(matriks_pesan_biner_b)

# Mendapatkan pesan dalam bentuk biner yang terbagl menjadi jdua bagian
biner_split_matriks r = np.vectorize(piksel biner_split) (matriks_pesan_r)
biner _split_matrike g = np.vectorize(piksel_biner_split){matriks_peaan_g)

biner_split_matriks_b = np.vectorize(piksel_biner_split)(matrika_peaan_b}

# Matriks hasil dari np.vectorize akan berbentuk (2, H, W), kita ubah menjadi (H, W, 2}

biner_split_matrike r = np.transpose(biner_aplit_matriks_r, o PO EORs 5
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biner_split_matriks_g = np.transpose(biner_split_matriks_g, (1, 2, 0))

biner_split_matriks_b = np.transpose(biner_split_matriks_b, (1, 2, 0)}

# Mendapatkan bit pertama dan kedua dari masing-masing kanal
x_1l_r = biner_split_matriks_r[:, :,

z_2_r = biner_split_matriks_ r([:, :,

z_1_g = biner_split _matriks_g[:, :,

x_?_g = biner_split_matriks_g[:, :,

x_ 1 b = biner split matriks bl[:, -,

x_2_b = biner_split _matriks_b([:, :,

print("\nPesan bagian bit pertama He:ahb{i*
print(x_1_r[:10, :10])

print ("\nPesan bagian bit kedua Merah(R):")
print(x_2_r[:10, :10])

print("\nPesan bagian bit pertama Hijau(G):")

print(x_1_g[:10, :10])




print("\nPesan bagian bit kedua Hijau{G):")
print(x_2_g[:10, :101)

print("\nPesan bagian bit pertama Biru(B):")

print{x_1_b[:10, :10]) - \\; \f- 7
P gy
- ‘

print(x_2_b[:10, :10])

# Matriks Generator
G = np.array ([[’11110000°], ['00111100°],

*

J Ny L

print(G)
> . -~ —,

# Melakukan perkalian matriks pesan ﬂ.engan na'ﬁlﬁkilﬁ?{qw};\d\;r‘i masing-masing kanal warna
pesan_bagian_1_r = perkalian matriks(x_1_r, G)

pesan_bagian 2 _r = perkalian matrike(x_ 2 r, G)

print("\nHasil perkalian pesan bagian bit pertama Merah(R):")

print(pesan_bagian_1_r[:10, :10])




print("\nHasil perkalian pesan bagian bit kedua Merah(R):")
print(pesan_bagian_2_r[:10, :10])

pesan_bagian_1_g = perkalian_matriks(z_1_g, G)

pesan_bagian_2_g = perkalian_matriks(x_2_g, G) :
\ AD N { /\}

& -
print("\nHasil perkalian pesan bagian bit-‘ﬁii‘r i

print{pesan_bagian_1_g[:10, :101) __:\ //
— A
Z =
print("\nHasil perkalian pesan bagian bit | p—
print{pesan_bagian_2_g[:10, :101) o i
w x
pesan_bagian_1_b = perkalian matriks (x-1.b C
pesan_bagian_2_ b = perkalian matriks (x_-_24:b4',» ‘\:
= " L'\
——

( jlﬁ v
print("\nHasil perkalian pesan bagian bit pert afﬁf{l{(‘ﬁ‘%\"}\

print(pesan_bagian_1_b[:10, :10]1)

print("\nHasil perkalian pesan bagian bit kedua Biru(B):")
print(pesan_bagian_2_b[:10, :10])

# Mendapatkan dimensi gambar pesan dari masing-masing kanal warna
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tinggi_r, lebar_r = matriks_pesan_r.shape
tinggi_g, lebar_g = matriks_pesan_g.shape
tinggi_b, lebar_b = matriks_pesan_b.shape

# Flatten matriks bagian pertama dan kedua
flatten_bagian_1 r = pesan_bagian_ 1_r.flatten ()

flatten_bagian_2_r = pesan_bagian_2_r.flatten()

flatten_bagian_1_g = pesan_bagian_1_g.flatten ()
flatten_bagian 2 g = pesan_bagian 2 _g.flatten()

flatten_bagian_1_b = pesan_bagian_1_b.flatten ()
flatten_bagian 2 b = pesan_bagian_ 2 _b.flatten ()

# Gabungkan kedua bagian
gabungan_flatten_r = np.concatenate((flatten_bagian_l_r. flatten_bagian_z_r})
gabungan_flatten_g = np.concatenate((flatten bagian 1 g, flatten bagian 2 _g))

gabungan_flatten_b = np.concatenate((flatten_bagian_1_b, flatten_bagian_2 b))

# Reshape menjadi ukuran height x (2 * width)
gabungan_matriks_r = gabungan_flatten_r.reshape((2+tinggi_r, lebar_r}]

gabungan_matriks g = gabungan flatten_g.reshape((2+*tinggi_g, lebar_g))
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gabungan_matriks_b = gahungan_flattan_b,reshape((?*tinggi_h, lebar_b))

print{"\nMatriks gabungan kata kode Merah(R):")

print{(gabungan_matriks_r)

print("\nMatriks gabungan kata kode Hijau(G)i")

print{gabungan_matriks_g)

print("\nMatriks gabungan kata kode Biru(Bj:")

print{gabungan matriks_b)

# Proses Steganografi: Memyisipkan pesan
hasil_steganografi_r, pos_r = steganografi(matriks cover_r, gabungan_matriks_r)
hasil_stegancgrafi_g, pos_g = ateganografi(matrﬁkg_ggveg;g, gabungan_matriks_g)

hasil steganocgrafi b, pos_b = steganografi(matriks cover b, gabungan matriks_b)

# Simpan hasil steganografi untuk verifikasi
Image.fromarray(np.uint8(hasil_steganografi_r)).save("atego_Jamur_r.png")
Image.frnmarray(np.uintB(haﬂil_steganugrafi_g]).save("stego_Jamur_g.png")

Image.fromarray(np.uint8(hasil_steganografi_b)).save("stego_Jamur_b.png")

hasil_stego_rgb = np.stack((hasil_steganografi_r, hasil _steganografli g, haail_ateganografi_b], axis=-1)
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# Konversi matriks pesan tersembunyi ke dalam bentuk gambar
hasil_stego = Image.fromarray(np.uint8(hasil_stego_rgh))

Image.fromarray(np.uint8(hasil_stege)).save("stego_Jamur_rgb.png")

# Menyimpan posisi ke file

simpan_posisi(pes_r, "posisi_r.txzt")

# Mengubah gambar ke RGE

stegoRGE = hasil_stego.convert ("RGBE")

# Mengubah Gambar stego ke bentuk matriks

matriks_stego = np.array(stegoRGE)

# Pisahkan kanal warna
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stegoRGB_r, stegoRGE_g, stegoRGB_b = stego

matriks_stegoRGB_r = np.array(stegoRGB_r)

matriks_stegoRGB_g = np.array(stegoRGB_g)

RGB.split(}

matriks_stegoRGB_b = np.array(stegoRGB_b) \ \\.) \{-
™\ s
i S {
print("\nMatriks stego Merah(R)") e '
print(matriks_stegoRGB_r) J;:N
S
print("\nMatriks stego Hijau(G)") -
print(matriks_stegoRGE_g) e
*
print("\nMatriks stego Biru(B)") e
print{matriks_stegoRGB_b) '<:’
/{ .
A

# Menghitung MSE
original _r= np.array(matriks_cover_r)

modified_r= np.array{matriks_ateguRGB_rJ

original _g= np.array(matrika_cover_g)

modified_g= np.array(matriks_stegoRGB_g)

F
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original_b= np.array(matriks_cover_b)

modified_b= np.array(matriks_stegoRGB_b)

mse_r = calculate_mse(original_r, modified_r) - \\_} \{-
print (f"MSE_r: {mse_r}") H\\ ' ‘ ‘/l}l/ .
Q- 7

mse_g = calculate mse(original g, modifi

print(f"M3E_g: {mse_g}") .

mse_b = calculate mse(original b, mo

7
&,
=
print (f"MSE_b: {mse_b}") * *
ﬂ
5 S
x

1 ‘lk‘”" eganografi
S
>

print(f"Nilai PSNR Gabungan (RGE): {psnr_valu'a_.fglj);_E{W?‘iw‘t'\_

psnr_value_rgbh = calculate_p_snr(matriks_:cdv&) ma

##Hasil Stego##

# Buat subplot untuk menampilkan keempat gambar

fig, axs = plt.subplots(2, 2, figsize=(10, 10))

IL



# Tampilkan gambar-gambar pada subplot
axs [0, 0].imshow(hasil_steganografi_r, cmap='gray'}

axs [0, 0].set_title(’'Hasil Steganografi R?)

axs [0, 0].axis('off?) ) \g_) \f- ‘/
- Lad L
0 |

=
axs[0, 1].imshow(hasil_stegancgrafi_g, cmap=
axs [0, 1].set_title(’Hasil Steganograﬁ!m ¥

axs [0, 1].axis('off’)

axs[1, 0].imshow(hasil steganografi
axs[1, 0].set_title(’Hasil Steganogf'&f}*’ B
axs[1, 0].axis('off?)
axs[1, 1].imshow(hasil stego_rgh) f ) 2
axs[1, 1].set_title(’'Hasil Steganografi RGB') \ )’]
axs[1, 1].axis('off’)

# Tampilkan subplet
plt.show ()

\ :
ROBO
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2.2 Program Steganografi (Ekstraksi Pesan, Dekode dan Mencari Nilai PSNR)

from PIL import Image, ImageQps
import numpy as np
import randem

import matplotlib.pyplot as plt

##KUMPULAN FUNGSI##
#Mengubak matriks ke bilangan biner
def couvart_tu_hinary_matrix(matrix):
binary matrix = np.ve:torize(np.binary_repr)(matrix, width;é)

return binary_matrix

# Fungei untuk mengubah nilai piksel ke hllangan biner
def piksel_biner_split(mnilai_piksel):
string_biner = format{nilai_piksal, "08b'}

# Jika panjang bit 8, stringnya 4. karena 8/2=4. atau mnanti menyesuaikan dengan panjang bit dan dib)

return string_biner[:4], string_biner[4:]

# Fungsi untuk operasi logika biner XOR

def biner_xor{binl, bin2):

return *'.join{(?1® if bl != b2 else '0' for bl, b2 in zip(binl, bin2))
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# Fungsi untuk proses perkalian antara elemen biner dengan matriks generator
def perkalian(elemen, generator):

# Nilai awal untuk hasil cperasi XOR yang akan dilakukan pada setiap iterasi

result = '00000000° - \\,) \f-

# Iterasi menggunakan enumerate kﬁ\\ ' i '-/\} ]
& - - F

for i, bit in enumerate(elemen): et /

if bit == ?17:

result = bine:r_xor(result-.:_;__gg ’ -:j
return result =3 p=—
— w
# Fungsi untuk proses perkalian kedua *ﬁt *
def perkalian matriks(matriks, gener&tﬂﬂ: C
baris, kolem = matriks.shape /./ ‘\:
- '-L\

result = np.empty((baris, kolom), -dt-ypet;'o)lig_ \--..
‘Y Db OV
| PROBO
for i in range(baris):
for j in range(kolom):

result[1, j] = perkalian{(matriks[i, j], generator)

return result
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def Eiza(_gs)x
return len(gs), len(gs[0])

def ope_xor(x, y):

int_x = int(x,2) . . |
g S AS NUp
int_y int(y,2) Lﬁ\ \(

return int_x"int_y

#return (int(x) = int{y}) % 256 | ™
g

# Fungsi untuk mengubah bilangan buh'._f_.-_‘u_

def convert_to_binary_8bit(elemen): * *
return format(elemen, '08hb?) 0 4 C
v‘/' 5
# Fungsi untuk menyembunyikan pesan ke dqla"}-ﬁm ar de posisdi acak
def steganografi(matriks_cover, p): v )’]R.-{‘ -}‘i-?]t_\\

gs = matriks_cover.copy()

bgs, kgs = size(ga) #bgs: baris gs, kgs: kolom gs, gs: cover
bp, kp = aize(p)

total posisi = bgs * kge

if bp * kp > total_posisi:

raise ValueError("Pesan terlalu besar untuk disembunyikan di gambar

cover.")

SL



pos = [(i // kgs, i % kgs) for i in range(total_posisi)]
random.shuffle(pos)
pos = pos[:bp * kpl

TdEi= o H\

for i in range(bp):

for j in range(kp):
entri=matriks_cover [pos [idx] [
entri_biner=convert_to_binar

gs[pos[idx][0]][pos [1dx][’ﬂ‘j

#print(entri, plil[j], g=[lpos *
idx 4= 1 =0 O
return gs, pos /'/ > &\.::
J\ \ :
# F i untuk i isi ke fil ‘Y p 1O\
ungsi un menyimpan posisi ke e )’ {{‘ ‘}i“t ]

def simpan_posisi f:poa , file_path):
with open(file_path, ’w’) as f:
for p in pos:

f.owrite(£"{p[0]} {p[1]1}\n")

# Fungsi untuk memuat posisi dari file
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def muat_pusisi{fila_path}:
pos = []
with open(file_path, 'r’} as f:
lines = f.readlines()

for line in lines:

AS NUp

1
x, ¥y = map(int, line ..strip().spl@?{)i)-
- -
pos.append ((x, ¥y)) N

return pos '/
7,
v -
# Fungsi untuk mendekode pesan dari gambap o
def dekode_steganografi(gs, pos, ma_rﬂf’! ~t
dekode_pesan = [] w x
i . - -~
for p in pos: J :“
#mengubah masing-masing entri ke-‘ﬁ;ﬂn N
> %)

pesan_biner = canvert_to_hinary_'s:b{fgﬁzt ? —
cover_biner = convert_to_binary_8bit{matriks cover \]", 1

¥ (matriksie YW{?\@ pI11D)
dekode _pesan.append(ope_xor (pesan_biner ,cover_biner))

return dekode_pesan

# Fungsl untuk menghitung MSE

def calnnlate_mﬂe(uriginal. modified):

mee = np.mean((original - modified) =*% 2)

EE



raturn mse

# Fungsi untuk menghitung

max_pixel = 255.0

return psnr

def pesan_4bit (kata_kode):
a = int(kata_kode[1])
b = (int(kata_kode([3])
¢ = int(kata_kode[7])
d = {int(kata_kode[0])}

return np.array (fa, b,

#Fungsi untuk konversi bin

def konversi_biner_ke_int(

mse = calculate_mse(original, modified) - \\_) \ {-
if mse == 0: # Prevent division by zero\_ﬁ\\ ' ‘ /\}
& -
return float (’inf’') R

psnr = 20 = np.logl0(max_pizel / ng“s

#Fungsi untuk pengembalian kata kode Ke b

PSNR

def calculate_psnr{original, modified):

N

—_—

=

0

_.-f
- L k"'d./';[,ﬂ'
in ata_kode }i

>
ey O
= O
¥ PROROM
- int(kata_kode[1])) % 2
c, d])

er ke integer

matriks) :

return np.array([[int (bit, 2} for bit in baris] for baris in matriks])
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#Fungsi untuk membuat matriks dari hasil pesan biner 4 bit
def proses_matriks(matriks):
hasil = []
for baris in matriks:
hasil_baris = []
for elemen in baris:
kata_kode = format(elemen, '08L*}
pesan_kode = pesan_4bit(kata_kode)
pesan_biner = ’’.join(map(str, pesan_kode))
hasil_baris.append(pesan_biner)
hasil .append (hasil_baris)

return np.array(hasil)

#Fungsi untuk menggabungkan 2 matriks pesan biner 4-bit menjadi -8-bit
def gabungkan_matriks(matriksl, matriks2):
hasil_gabungan = []
for i in range(matriksl.shape[0]):
baris_gabungan = []
for j in range(matrikel.shape[1]):
elemen_gabungan = matriks1[i, j] + matrike2[i, j]

baris_gabungan.append(elemen_gabungan)
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hasil_gabungan.appand(haris_gahungan)

return np.array(hasil_gabungan)

##PROSES STEGANOGRAFI## . \\g; \%-{
1\ ~
# Memuat gambar dan pesan L-‘\
o B

path_cover = ’'peles. jpg’ :
path_pesan = ’jamur.jpg’ Y /

2 — f

o

path_stepgo = 'stego_Jamur_rgh.png’

=
cover = Image.open(path_cover) -
pesan = Image.open(path_pesan) »
0

stego = Image.open(path_stego)

7

# Mengubah gambar ke RGE dan matriks (:)\

—

b ®

PROBO

coverRGE = cover.convert("RGE")

matriks_cover = np.array(coverRGE)

pesanRGE = pesan.cunvert('ﬂGB“}

matriks_pesan = np.array(pesanRGE)

stegoRGB = stego.convert ("RGE")




matriks_stego = np.array(stagoﬂGE)

# Pisahkan kanal warna

cover_r, cover_g, cover_b = coverRGB.split ()
pesan_r, pesan_g, pesan_b = pesanRGB.split ()
stego_r, stego_g, stego_b = stegoRGE. apllt(3L$\\

# Mengubah gambar ke matriks
matriks_cover_r = np.array(cover_r)}
matriks_cover_g = np.array(cover_g)

matriks_cover_b = np.array(cover_b)

print("\nMatriks cover Merah(R)") e

print(matriks_cover_r)

AS N,
R,

<,
print("\nMatriks cover Hijau(c)“) \ f]’ L]% t\\

print (matriks_cover_g)

print("\nHatrikB cover Biru(B)")

print(matriks_cover_b)

matriks_pesan_r = np.array(pesan_r)
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matriks_pesan_g = np.array(pusan_g}

matriks_pesan_b = np.array(pesan_b)

matriks_stego_r = np.array(stego_r)
matriks_stego_g = np.array{stego_g)}

matriks_stego_b = np.array(stego_b)

print("\nMatriks stego Merah(R)")

print(matriks_stego_r)

print{"\nMatriks stego Hijau(G)")

print(matriks_stego_g)

print("\nMatriks stego Biru(B)")
print(matriks_stego_b)

#Matriks pesan biner

matriks_cover_biner_r = convert_to_hinary_matrix(matriks_cover_r)
matriks_cover_biner_g = convert_tu_hinary_matrix(m&trika_cuver_g}
matriks_cover_biner_b = conver:_to_binary_matrix(matrika_cover_b)

print("\nMatriks cover biner Merah(R)")
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print(matriks_cuver_hiner_r}

print("\nMatriks cover biner

print(matriks_cover_biner_g)

print("\nMatriks cover biner

print{matriks_cover_biner_b)

matriks_pesan_biner_r = convert_to_binary_matrixCmitriks_pesan_n}
matriks_pesan_biner_g = convert_to_binary_nntrix(natriks_pe!an_gj

matriks_pesan_biner_b = convert_to_binary matrix(matriks_pesan_b)

matriks_stego_biner_r = convert_ta_binary_matrixfnatriks_stegﬁ_r)
matriks_stego_biner_g = convert_ta_binarj_mattﬁﬁ(hatrika_ﬁtégg_gJ

matriks_stego_biner_b = convert_to_binary matrix(matriks_stego_b)

print("\nMatriks stego biner

print(matrika_stego_biner_r)

print("\nMatriks stego biner

print(matriks_stego_hiner_g]

Hijau(G)")

Biru(B)")

Merah (R)")

Hijau(G)")
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print ("\nMatriks stego biner Biru(R)")

print(matriks_stego_biner_b)

# Mendapatkan pesan dalam bentuk biner yang terbagi menjadi dua bagian
biner_split_matriks_r = np.vectorize(piksel _biner_split) (matriks_pesan_r)
biner_split_matriks_g = np.vectorize(piksel biner split)(matriks pesan_g)

biner_split_matriks_b = np.vectorize(piksel_biner_split) (matriks_pesan_b)

# Matriks hasil dari np.vectorize akan berbentuk 2, ", W), ¥ita ubah menjadi (H, W, 2)
biner_split_matriks_r = np.transpose(binez_split;matriks_r, EIH.E. 0))
biner_split_matriks g = np.transpose(biner split matriks g, (1, 2, 0))

biner_split_matriks b = np.transpose{biner split_matriks b, ™(1, 2, 0})

# Mendapatkan bit pertama dan kedua dari masing-masing kanal

¥_1_ r = biner_split_matriks_r([:, :, 0]
¥_2_r = biner_split_matrika_r[:, :, 1]
£ 1_g = biner_split_matriks_g[:, :, 0]
x_2_g = biner_split_matrika_gl:, :, 1]
x_1_b = biner_split_matriks_b([:, :, 0]

£_2_b = biner_split_matriks_b[:, :, 1]




# Matriks Generator
G = np.array([[’11110000°], ['00111100'], [?*0O0001111'], [?101010107]])

- AS NI

# Melakukan perkalian matriks pesan dengan mg?kéks' enerator
& |

e

pesan_bagian_1_r = perkalian_matriks (__x_"l‘-:l.fs‘_;:_g

) N
pesan_bagian_2_r = perkalian matriks(x_2.r,

5 2
< et
pezan_bagian_1 g = perkalian matriks -
pesan_bagian_2_ g = perkalian matriks(: ®x
- o~
= S
pesan_bagian_1_b = perkalia_n_matriks(x_l@,\ ~ W
= ‘_L"\

N

pesan_bagian_2 b = pe:kalian_matriks(x_2_b_,(£_7)\ —
¥ PROBO

# Mendapatkan dimensi gambar pesan dari masing-masing kanal warna
tinggi r, lebar_ r = .matrika_peaan_r.shape
tinggi_g, lebar_g = matriks_pesan_g.shape

tinggi b, lebar b = matriks_pesan_b.shape

# Flatten matriks bagian pertama dan kedua

/ﬁ)¥1 masing-masing kanal warna

ce



flatten_bagian_1_r

flatten_bagian_2_r

flatten_bagian_1_g
flatten_bagian_2_g

flatten_bagian_1_b
flatten_bagian 2 b

pesan_bagian_1_r.flatten()

pesan_bagian_2_r.flatten ()

pesan_bagian_1_g.flatten ()
pesan_bagian_2_g.flatten ()

pesan_bagian_1_b.flatten ()
pesan_bagian 2 _b.flatten ()

# Gabungkan kedua bagian

gabungan_flatten_r
gabungan_flatten_g
gabungan_flatten_b

np.concatenate((flatten bagian_ 1 r, flatten bagian 2 r})
np.concatenate ({flatten bagian 1_ g, flatten bagian 2 _g))
np.concatenate ((flatten _bagian 1 b, flatten bagian 2 b))

# Heshape menjadi ukuran height x (2 * width]

gabungan_matriks _r
gabungan matriks g

gabungan _matriks_b

gabungan_flatten_r.reshape((2#tinggi_r, lebar_r))
gabungan flatten_g.reshape ((2+tinggi_g, lebar_g))
gabungan_flatten_ b.reshape((2+#tinggi_ b, lebar_b))

# Proses Dekode: Mengeksatrak pesan

# Memuat posisi dari file
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poeisi_termuat_r = muat_posisi("posisi_r.txt"}
posisi_termuat_g = muat_posisi("posisi_g.txt")

posisi_termuat_b = muat_posisi("posisi_b.txt")

# Dekode pesan dari gambar hasil steganografi

pesan_tersembunyi_r = dekode_steganografi(matriks stego r, pogisi termuat_r, matriks_cover_r)
pesan_tersembunyi_g = dekode_steganografi (matriks_stego_g, posisi_termuat_g, matriks_cover_g)
pesan_tersembunyi_b = dekode_stegancgrafi(matriks_stego b, posigi termuat_b, matriks_cover_b)

# Ubah pesan tersembunyi ke dalam bentuk matriks dengan elemen bilangan biner B bit
bp_r_r, kp_r_r = gabungan matriks_r, shape

matriks_pesan_tersembunyi_r = np.array(pesan_teérsembunyi r).reshape(bp r r, kp_r_r)

bp_r_g, kp_r_g = gabungan _matriks_g.shape

matriks_pesan_tersembunyi_g = np.array{pesan_tersembunyi_g).reshape(bp_r_g, kp_r_g)

bp_r_b, kp_r_b = gabungan matriks_b.shape

matrike _pesan_tersembunyi b = np.array(pesan_tersembunyi_b).reshape(bp_r_b, kp_r_b)

#Matriks pesan biner
pesan_tersembunyi_r = np.vecturize(cunvert_to_binary_8hit)

matriks _pesan_tersembunyi_bin_r = pesan_tersembunyi_r(matriks_pesan_tersemhunyi_r)
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pesan_tersembunyi_g = np.vectorize(convert_to_binary_8bit)

matriks_pesan_tersembunyi_bin_g =

pesan_tersembunyi_g(matriks_pesan_tersembunyi_g)

pesan_tersembunyi_b = np.vectorize(convert_to_binary_8bit)

matriks_pesan_tersembunyi_bin_ b =

pesan_tersembunyi b(matriks_pesan_tersembunyi_b)

print("\nPesan tersembunyi Merah(R):")

print(matriks_pesan_tersembunyi_bin_r)

print("\nPesan tersembunyi Hijau(G):")

print(matriks_pesan_tersembunyi_bin_g)
print("\nPesan tersembunyi Biru(B):")

print({matriks_pesan_tersembunyi_bin_b}

##Mengembalikan kata kode yang sudah digabung##

# Flatten matriks gabungan

flatten_gabungan_ r = matrika_pesan_tersembunyi_bin_r.flatten()

flatten_gabungan_g
flatten_gabungan_b

matriks_pesan_tersembunyi_bin_g.flatten(}

matriks_pesan_ tersembunyi_bin b.flatten()
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# Tentukan ukuran asli masing-masing matriks

size_matriks_r = tinggi_r * lebar_r

size_matriks_g = tinggi_g * lebar_g

size_matriks_b = tinggi_b * lebar_b

# Pisahkan menjadi dua matriks

flatten_bagian 1 r =

flatten_bagian_2_1r =

flatten _bagian 1 g =
flatten_bagian_ 2 g =

flatten_bagian_ 1 b =
flatten_bagian 2 b =

# Reshape kembali ke
matrike _bagian 1 _r =

matriks_bagian_ 2 _r =

flatten_gabungan r[:size matriks r]

flatten_gabungan_r [size matriks-r:}

flatten gabungan g[:size matriks gl

flatten_gabungan glsize matriks g:1]

flatten _gabungan b[:size matriks b]
flatten_gabungan blsize matriks_b:l

ukuran asli
flatten_bagian_1_r.reshape((tinggi r, lebar_r))

flatten_bagian_?_r.reahape((tinggi_r, lebar_r))

print("\nKata kode bagian 1 Merah(R):")

print(matrike_bagian_1_r)
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print("\nKata kode bagian 2 Merah(R):")

print(matriks_bagian_2_r)

) I\ L1 N
matriks_bagian 2 g = flattan_‘bagian_z_g.r.eah@;?b tinggi g, '1&§)al,|'ﬁg".’))
& ' /

B i

print("\nKata kode bagian 1 Hijau{G):';_':\

matriks_bagian_1_g = flattsn_‘ba.gian_l_g.resha;pu_((t_inﬁgib%.( lebar_g))

7
print(matriks_bagian_1_g) ‘:-;“‘ ":J
f e
print("\nKata kode bagian 2 Hijau(G):") i
print{matriks_bagian_2_g) w *
- P
o A

matriks_bagian 2 b = flatt-en_‘bagian_Q_‘b.res){?ﬁ i b,
‘V n
PRO

print ("\nKata kode bagian 1 Biru(B):")

print(matriks_bagian_1_b)

print("\nKata kode bagian 2 Biru(B):")
print(ma'triks_hagian_Z_'h)




# Matriks biner

matriks_bagian_pertama_r = np.array(matriks_bagian_1_r)

matriks_bagian_kedua_r = np.array(matriks_bagian_2_r)

matriks_bagian pertama_g = np.arrayf{matriks bagian 1 _g)

matriks_bagian_kedua_g = np‘array(matriks_hagiaﬂ_Eég}

matriks_bagian_pertama_b = np.array(matriks_bagian_1_b)

matriks_bagian_kedua_b = np.array(matriks_bagian_ 2.b)

# Konversi
matriks_1_r

matriks _2_r

matriks_1_g

matriks 2 _g

matrikse_1_b

matriks_2_b

string biner ke integer

konversi_biner_ke_int (matriks_bagian pertama r)

konversi_biner_ke_int(matriks_bngiqn_kgdug_;)

konverai_biner_ke_int(matriks_bagian_pertam&_g}

konversi_biner _ke_int (matriks_bagian_ kedua_g)

konversi_biner_ke_int(matriks_bagian_pertama_b}

konverai_biner_ke_int(matriks_bagian_kedua_b)

# Proses pesan dari setiap elemen matriks
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pesan_bagian_pertama_r = prusas_matriks(matriks_i_r)

pesan_bagian_kedua_r = proses_matriks (matriks_2_r)

pesan_bagian_pertama_g = proses_matriks(matriks_1_g)

pesan_bagian_kedua_g = proses_matriks(matriks_2_g)

pesan_bagian_pertama_b = proses_matriks(matriks_l_b}

pesan_bagian_kedua b = proses_matriks (matriks 2 b)

# Gabungkan matriks

hasil_gabungan r =

hasil _gabungan g =

hasil_pgabungan_ b =

matriks_gabungan_r=
matriks_gabungan_g=

matriks _gabungan_b=

gabungkan_matriks (pesan_bagian pertama r, pesan_bagian_kedua_r)
gabungkan matriks{pesan_bagian pertama g, pesan_bagian_kedua_g)

gabungkan _matriks (pesan_bagian_pertama_ b, pesan_bagian_kedua_b)

konversi_biner_ke_int(hasil_gabungan r)
konverai_biner_ke_int(haeil_gabungan_g)

konversi_biner ke_int (hasil _gabungan b)

# Simpan hasil steganografi untuk verifikasi

Image.fromarray (np.
Image.fromarray{np.

Image.fromarray(np.

uint8(matriks_gabungan_r)).save("hasil_r.png")
uint8(matriks_gabungan_g)).save("ha=sil_g.png")

uint8 (matrike_gabungan_b)).zave{"hasil b.png")
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hasil_pesan_rgh = np.stack((matriks_gabungan_r, matriks_gabungan_g, matriks_gabungan_b), axis=-1)

# Konversi matriks pesan tersembunyi ke dalam bentuk gambar
hasil_pesan = Image.fromarray(np.uint8(hasil_pesan_rgh))

Image.fromarray(np.uint8(hasil_pesan)).save("hasil wisuda rgb.png")

print("\nPesan bagian bit pertama Merah(R):\mn", pe

print("\nPesan bagian bit kedua Merah(R):\m", pesan bagian kedua_r
print("\nHasil gabungan matriks pesan Hernhfﬁ):\n”?:hasil;g&bun&t@;r)

ama_g)
print{"\nPesan bagian bit kedua Hijau(@):\n!", pesan_bagian kedua g)

print("\nPesan bagian bit pertama Hijau(G):\n'"4 pesanibagianupe

print("\nHasil gabungan matriks pesan Hijau(G}iNn'; hasil ungan_g)

print("\nPesan bagian bit pertama Biru(E):\n", peaan_bagian_pertama_b)
print("\nPesan bagian bit kedua Biru(B):\n", pesan_bagian_kedua_b)

print("\nﬁasil gabungan matriks pesan Biru(B) :\n", hasil_gabungan_b)

##Hasil Pesan##
# Buat subplot untuk menampilkan keempat gambar

fig, axs = plt.subplots(2, 2, figsize=(10, 10))
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# Tampilkan gambar-gambar pada subplot

axs [0,
axs [0,

axs [0,

axs [0,
axs [0,

axs [0,

axs[1,
axs[1,

axs[1,

axs[1,
axs[1,

axs[1,

7
1].axis('off’) iy .,J
e =t
0]. imshow (matriks_gabungan_b, Eﬁlu w
0].set_title('Pesan yang diek_“_*ﬁk. *

01.axis('off’) O ¥ O

o AT
\ LS

0] .imshow (matriks_gabungan_r, cmap=’gray’)

0].set_title(’Pesan yang diekstrak R?)

01.axis('off’) e QS N7
A4 {"'f(,/

11. imshow(matriks_gabungan_g, cmap=

1].imshow(hasil_pesan_rgh) (:)

2 i , ; . WD 2
1].set_title('Pesan yang diekstrak RGE } {: Rtﬂ"’t\\
1].axis('off?)

b ®

# Tampilkan subplet

plt.show ()

##Gambar Lengkap RGE




fig, axs

plt.subplots(2, 2, figsize=(10, 10})

# Tampilkan gambar-gambar pada subplot

axs [0,
axs [0,

axs [0,

axs [0,
axs [0,

axs [0,

axs[1,
axs[1,

axell,

axs[1,
axs[1,

axs[1,

0l.
0l.
01

11.
i1.
11.

01,

01.
01.

1].
11.
11.

imshow (matriks_cover)

set_title('Cover RGB') . " 1
axis('off?) \\ \H \ {/l}
: -y
" \:ﬁ-" o
imshow (matriks_pesan) J__:\ /

set_title{’'Pesan yang disis

axis(’eff’)

i
imshow(stego)
axis(’off?)

inahow(hasil_pesan_rgb')

axis('off?)

# Tampilkan subplot

plt.show ()
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